UNIFIED FACILITIES CRITERIA (UFC) # DESIGN: PASSIVE SOLAR BUILDINGS APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED # UNIFIED FACILITIES CRITERIA (UFC) # **DESIGN: PASSIVE SOLAR BUILDINGS** Any copyrighted material included in this UFC is identified at its point of use. Use of the copyrighted material apart from this UFC must have the permission of the copyright holder. U.S. ARMY CORPS OF ENGINEERS NAVAL FACILITIES ENGINEERING COMMAND (Preparing Activity) AIR FORCE CIVIL ENGINEERING SUPPORT AGENCY Record of Changes (changes indicated by \1\ ... /1/) | Change No. | <u>Date</u> | Location | |------------|-------------|----------| | | | | | | | | # **FOREWORD** The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides planning, design, construction, sustainment, restoration, and modernization criteria, and applies to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance with USD(AT&L) Memorandum dated 29 May 2002. UFC will be used for all DoD projects and work for other customers where appropriate. UFC are living documents and will be periodically reviewed, updated, and made available to users as part of the Services' responsibility for providing technical criteria for military construction. Headquarters, U.S. Army Corps of Engineers (HQUSACE), Naval Facilities Engineering Command (NAVFAC), and Air Force Civil Engineer Support Agency (AFCESA) are responsible for administration of the UFC system. Defense agencies should contact the preparing service for document interpretation and improvements. Technical content of UFC is the responsibility of the cognizant DoD working group. Recommended changes with supporting rationale should be sent to the respective service proponent office by the following electronic form: Criteria Change Request (CCR). The form is also accessible from the Internet sites listed below. UFC are effective upon issuance and are distributed only in electronic media from the following sources: - Unified Facilities Criteria (UFC) Index http://65.204.17.188//report/doc_ufc.html. - USACE TECHINFO Internet site http://www.hnd.usace.army.mil/techinfo/index.htm. - NAVFAC Engineering Innovation and Criteria Office Internet site http://criteria.navfac.navy.mil. - Construction Criteria Base (CCB) system maintained by the National Institute of Building Sciences at Internet site http://www.nibs.org/ccb. Hard copies of UFC printed from electronic media should be checked against the current electronic version prior to use to ensure that they are current. **AUTHORIZED BY:** DONALD L. BASHAM, P.E. Chief, Engineering and Construction Division U.S. Army Corps of Engineers KATHLEEN I. FERGUSON DE. The Deputy Civil Engineer DCS/Installations & Logistics Department of the Air Force DR. JAMES W WRIGHT, P.E. Chief Engineer Naval Facilities Engineering Command Dr./GET W.MOY, P.E. Director, Installations Requirements and Management Office of the Deputy Under Secretary of Defense (Installations and Environment) # **CONTENTS** | CHAPTER ' | 1 INTRO | DDUCTION | Page | |-----------|---|----------------------------|--------------------------| | Paragraph | 1-1
1-2
1-2.1
1-2.2
1-2.3
1-2.4
1-3 | | 1-1
1-1
1-1
1-1 | | APPENDIX | Α | MIL-HDBK 1003/19. MAY 1987 | A-1 | # CHAPTER 1 # INTRODUCTION 1-1 **PURPOSE AND SCOPE**. This UFC is comprised of two sections. Chapter 1 introduces this UFC and provides a listing of references to other Tri-Service documents closely related to the subject. Appendix A contains the full text copy of the previously released Military Handbook (MIL-HDBK) on this subject. This UFC serves as criteria until such time as the full text UFC is developed from the MIL-HDBK and other sources. This UFC provides general criteria for the design of passive solar buildings. Note that this document does not constitute a detailed technical design, maintenance or operations manual, and is issued as a general guide to the considerations associated with design of economical, efficient and environmentally acceptable heating plants. - 1-2 **APPLICABILITY**. This UFC applies to all Navy service elements and Navy contractors; Army service elements should use the references cited in paragraph 1-3 below; all other DoD agencies may use either document unless explicitly directed otherwise. - 1-2.1 **GENERAL BUILDING REQUIREMENTS**. All DoD facilities must comply with UFC 1-200-01, *Design: General Building Requirements*. If any conflict occurs between this UFC and UFC 1-200-01, the requirements of UFC 1-200-01 take precedence. - 1-2.2 **SAFETY**. All DoD facilities must comply with DODINST 6055.1 and applicable Occupational Safety and Health Administration (OSHA) safety and health standards. **NOTE**: All **NAVY** projects, must comply with OPNAVINST 5100.23 (series), *Navy Occupational Safety and Health Program Manual*. The most recent publication in this series can be accessed at the NAVFAC Safety web site: www.navfac.navy.mil/safety/pub.htm. If any conflict occurs between this UFC and OPNAVINST 5100.23, the requirements of OPNAVINST 5100.23 take precedence. - 1-2.3 **FIRE PROTECTION**. All DoD facilities must comply with UFC 3-600-01, *Design: Fire Protection Engineering for Facilities*. If any conflict occurs between this UFC and UFC 3-600-01, the requirements of UFC 3-600-01 take precedence. - 1-2.4 **ANTITERRORISM/FORCE PROTECTION**. All DoD facilities must comply with UFC 4-010-01, *Design: DoD Minimum Antiterrorism Standards for Buildings*. If any conflict occurs between this UFC and UFC 4-010-01, the requirements of UFC 4-010-01 take precedence. UFC 3-440-03N 16 January 2004 - 1-3 **REFERENCES**. The following Tri-Service publications have valuable information on the subject of this UFC. When the full text UFC is developed for this subject, applicable portions of these documents will be incorporated into the text. The designer is encouraged to access and review these documents as well as the references cited in Appendix A. - 1. US Army Corps of Engineers Commander USACE Publication Depot ATTN: CEIM-IM-PD 2803 52nd Avenue Hyattsville, MD 20781-1102 (301) 394-0081 fax: 0084 karl.abt@hq02.usace.army.mil **USACE TL 1110-3-491**Sustainable Design for Military Facilities 01 May 2001 http://www.usace.army.mil/inet/usace-docs/ # **APPENDIX A** # MIL-HDBK 1003/19 PASSIVE SOLAR BUILDINGS MILITARY HANDBOOK DESIGN PROCEDURES FOR PASSIVE SOLAR BUILDINGS AMSC N/A AREA FACR DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. # DEPARTMENT OF DEFENSE Washington, DC 20301 ## Passive Solar Design Procedures - 1. This military handbook is approved for use by all Departments and Agencies of the Department of Defense. - 2. Beneficial suggestions (reccomendations, additions, deletions) and any pertinent data which may be of use in improving this document shaould be addressed to: Commanding Officer, (Code 156), Naval Construction Battalion Center, Port Hueneme, CA 93043-5000, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter. #### FOREWORD The energy efficiency of buildings at Naval installations can be greatly improved through the use of passive solar heating strategies. These strategies are universally applicable to new buildings of small to moderate size and are also applicable to many existing buildings that are suitable for retrofit. The purpose of this handbook is to provide the tools needed by professionals involved in building design and/or evaluation who wish to reduce the consumption of non-renewable energy resources for space heating. Three types of tools are provided. First, a general discussion of the basic concepts and principles of passive solar heating is presented to familiarize the reader with this technology. Second, a set of guidelines is presented for use during schematic design or for initial screening if an evaluation is being performed. These guidelines enable the user to quickly define a building that will perform in a cost effective manner at the intended building site. Finally, a quantitative design-analysis procedure is presented that enables the user to obtain an accurate estimate of the auxiliary heating requirements of a particular passive solar design. This procedure may be used to refine a schematic design based on the guidelines already mentioned, or may be used to compare the merits of candidate designs in a proposal evaluation. These design procedures are an extension and refinement of an earlier five-volume set of publications entitled "Design Calculation Procedure for Passive Solar Houses at Navy Installations in: Regions with Cold Climates - Volume I" CR 82.002 East Coast Regions with Temperate Climates - Volume II" CR 82.003, Regions with Warm Humid Climates - Volume III" CR 82.004, The Pacific Northwest - Volume IV" CR 82.005, Warm California Climates - Volume V" CR 82.006. The following improvements and additions should increase the usefulness of the new manual: - o The design analysis procedure has been streamlined and is much faster than the original method. - o Performance correlations for 187 reference passive solar designs representing eight different types of systems are now available. - o The design procedure has been generalized by characterizing different climates with appropriate weather parameters, thereby eliminating the need for separate regional documents. - o The new document is applicable to townhouses and larger dormitory-type buildings as well as detached single-family residences. Office buildings or other structures of moderate size are also amenable to analysis by the new procedures. - o Performance correlations for passive solar
retrofits to concrete block and metal buildings are included in the manual. Because of the prevalence of these types of construction at Naval installations, the retrofit correlations should be especially useful. - o Procedures for estimating and minimizing the incremental cooling load associated with passive heating systems are provided. - o A procedure for estimating the effect of control strategy on performance is provided. The present form of the design procedures may be updated in succeeding years as the results of future research become available. In particular, a quantitative treatment of passive cooling strategies is planned. In the meantime, this edition will enable the user to design or retrofit buildings in a manner that greatly reduces the use of non-renewable energy resources for space heating. Acknowledgments. This Military Handbook is a result of a cooperative effort between the Naval Civil Engineering Laboratory (NCEL) and Los Alamos National Laboratory (LANL). The NCEL personnel include Edward R. Durlak and Charles R. Miles. The LANL personnel include W. O. Wray (principal author), and Claudia Peck, Elaine Best, Bob Jones, Doug Balcomb, Gloria Lazarus, Bob McFarland, Franz Biehl, and Horn Schnurr. # CONTENTS | Paragraph | 1. | SCOPE | |-----------|---------|--| | | 1.1 | Passive solar buildings: A general description 1 | | | 1.2 | Purpose of the design procedures 1 | | | 1.3 | Organization and use of the design procedures $$. $$. $$ 1 | | | 2. | REFERENCED DOCUMENTS | | | 2.1 | Other Government publications | | | 2.2 | Other publications | | | 2.3 | Order of precedence 4 | | | 3. | DEFINITIONS | | | 3.1 | Definitions of acronyms and symbols used in | | | | this handbook 5 | | | 4. | GENERAL REQUIREMENTS | | | 4.1 | Basic concepts | | | 4.1.1 | Direct gain heating | | | 4.1.2 | Daylighting | | | 4.1.3 | Radiant panels | | | 4.1.4 | Thermosiphoning air panels | | | 4.1.5 | Thermal storage walls | | | 4.1.5.1 | Trombe wall | | | 4.1.5.2 | Concrete block wall | | | 4.1.5.3 | Water wall | | | 4.1.6 | Sunspaces | | | 4.1.7 | Incremental cooling load | | | 4.2 | General climatic considerations | | | 4.2.1 | Characteristic weather parameters 17 | | | 4.2.2 | Importance of conservation measures 18 | | | 4.2.2.1 | Mild climates | | | 4.2.2.2 | Moderate climates | | | 4.2.2.3 | Harsh climates | | | 4.2.2.4 | Very harsh climates 20 | | | 4.2.3 | Solar availability | | | 4.2.3.1 | Most sunny region | | | 4.2.3.2 | Very sunny region | | | 4.2.3.3 | Sunny region | | | 4.2.3.4 | Cloudy region | | | 4.2.3.5 | Very cloudy region | | | 4.3 | Guidelines for schematic design 23 | | | 4.3.1 | Building shape and orientation | | | 4.3.2 | East, west, and north windows | | | 4.3.3 | Passive heating system characteristics 24 | | | 4.3.4 | Sizing overhangs | | | | | # Contents - Continued. | 4.3.5 | Insulation levels | 26 | |----------|------------------------------------|-----| | 4.3.6 | Infiltration | 33 | | 4.3.7 | Solar collection area | | | 4.3.8 | Thermal storage mass | | | 4.3.9 | Schematic design worksheet | | | | <u> </u> | | | 4.4 | Fundamentals of design analysis | 45 | | 4.4.1 | Terminology | 45 | | 4.4.1.1 | Solar collection area | | | 4.4.1.2 | Projected area | | | 4.4.1.3 | Transmitted solar radiation | | | 4.4.1.4 | Solar aperture absorptance | | | 4.4.1.5 | Absorbed solar radiation | 46 | | 4.4.1.6 | Net load coefficient | | | 4.4.1.7 | Load collector ratio | | | 4.4.1.8 | Total load coefficient | | | 4.4.1.9 | Thermostat setpoint | | | 4.4.1.10 | Diurnal heat capacity | | | 4.4.1.11 | Effective heat capacity | | | 4.4.1.12 | Effective thermsostat setpoint | | | 4.4.1.13 | Base temperature | | | | | | | 4.4.1.14 | Heating degree days | | | 4.4.1.15 | Effective building heat load | | | 4.4.1.16 | Net building heat load | | | 4.4.1.17 | Steady state heat load | | | 4.4.1.18 | Solar load ratio | | | 4.4.1.19 | Auxiliary heat requirement | | | 4.4.1.20 | Solar heating fraction | | | 4.4.2 | Heat to load ratio nomograph | | | 4.4.3 | System efficiencies | | | 4.4.3.1 | Delivery efficiency | | | 4.4.3.2 | Utilization efficiency | | | 4.4.3.3 | Total efficiency | 51 | | 5. | DETAILED ENGINEERING | 52 | | | | - | | 5.1 | Applied design analysis | 52 | | 5.1.1 | Net load coefficient worksheet | 52 | | 5.1.2 | Calculation of the EWC and the DHC | | | 5.1.3 | System parameters | | | 5.1.3.1 | Direct gain buildings | | | 5.1.3.2 | Radiant panels | | | 5.1.3.3 | Thermosiphoning air panels | | | | | | | 5.1.3.4 | Trombe walls | | | 5.1.3.5 | Water walls | | | 5.1.3.6 | Concrete block walls | | | 5.1.3.7 | Sunspaces | | | 5.1.4 | System parameter worksheet | | | 5.1.5 | Effective thermostat setpoint | | | 5.1.6 | Base temperature worksheet | ./(| # Contents - Continued. | 5.1.7
5.1.7.1
5.1.7.2
5.1.7.3
5.1.8
5.1.9 | Weather parameters | |--|--| | 5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.3 | Design refinement | | 5.2.4.2
5.2.4.3 | Incremental cooling load worksheet | | 5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
6. | Example calculations for a four-plex family housing unit | | | FIGURES | | Figure 1 2 3 4 5 6 7 8 | Direct gain heating system | # Figures - Continued. | Figure | 9 | Last month for full illumination of solar aperture | |--------|-------|---| | | | facing within 20 degrees of true south 27 | | | 10 | Overhang geometry | | | 11 | Ratio X/Y related to (Latitude - Declination) 28 | | | 12(a) | (Latitude - Declination) for January 29 | | | 12(b) | (Latitude - Declination) for February 29 | | | 12(c) | (Latitude - Declination) for March 30 | | | 12(d) | (Latitude - Declination) for April 30 | | | 13 | Principal climate regions (R-values) | | | 14 | Solar aperture area in percent of floorspace | | | | area (System 1) | | | 15 | Solar aperture area in percent of floorspace | | | | area (System 2) | | | 16 | Solar aperture area in percent of floorspace | | | | area (System 3) | | | 17 | Solar aperture area in percent of floorspace | | | | area (System 4) | | | 18 | Solar aperture area in percent of floorspace | | | | area (System 5) 40 | | | 19 | Solar aperture area in percent of floorspace | | | | area (System 6) 41 | | | 20 | Solar aperture area in percent of floorspace | | | | area (System 7) 42 | | | 21 | Solar aperture area in percent of floorspace | | | | area (System 8) | | | 22 | Solar aperture area in percent of floorspace | | | | area (System 9) 44 | | | 23 | Annual heat to load ratio 50 | | | 24 | Air density ratio versus elevation | | | 25 | The EHC thickness function (EF) vs X 60 | | | 26 | The DHC thickness function (DF) vs X 60 | | | 27 | Sunspace geometries (not to scale) | | | 28 | Four-plex family housing unit | | | | | | | | TABLES | | | | | | Table | I. | Steady state aperture conductances of passive systems | | | II. | Representative passive system costs | | | III. | R-Factors of building materials | | | IV. | | | | | - | | | V. | Reference design characteristics | | | VI. | Properties of building materials | | | VII. | Solar absorptance of various materials | | | VIII. | Trombe wall reference design characteristics 66 | # APPENDIXES Appendix A. System correlation parameters - B. Weather parameters C. Blank worksheets - D. Example worksheets #### 1. SCOPE 1.1 Passive solar buildings: A general description. A passive solar building is one that derives a substantial fraction of its heat from the sun using only natural processes to provide the necessary energy flows. Thermal conduction, free convection, and radiation transport therefore replace the pumps, blowers, and controllers associated with active solar heating systems. The elements of a passive solar heating system tend to be closely integrated with the structure for which heat is provided. South facing windows, for example, may serve as apertures through which solar energy is admitted to the building, and thermal storage may be provided by inherent structural mass. Solar radiation absorbed inside the building is converted to heat, part of which meets the current heat load whereas the remainder is stored in the structural mass for later use after the sun has set. Because of the integral nature of passive solar buildings, it is not possible to design the structure independent of the heating system as is usually done with active systems. Instead, it is necessary to consider the solar characteristics of the building from the initial phases of the design process to completion of the construction documents. A well designed passive solar building is comfortable, energy efficient, and very reliable because of its inherent operational simplicity. However, a poor design, lacking some or all of these desirable characteristics, may be very difficult to modify after construction is complete and the problems become manifest. It has therefore been necessary to develop a new approach to building design that couples solar/thermal considerations with the more traditional concerns of form and structure. This document does not address daylighting in a quantitative manner nor does it deal with passive cooling as a design strategy. However, the extent to which the summer cooling load may be aggravated by passive heating systems is quantified and various countermeasures are suggested. 1.2 Purpose of the design procedures. The purpose of these procedures is to make the results of recent scientific research on passive solar energy accessible to professionals involved in building design or design evaluation. By so doing, this new technology can be transferred from the research laboratory to the drawing board and the construction site. A successful transfer will
undoubtedly improve the energy efficiency of new buildings as well as many existing buildings that are suitable for retrofit. This document is addressed principally to prospective Navy contractors for design and construction of passive solar buildings. However, because good passive solar designs are of little value if they are rejected in favor of more conventional but less efficient structures, the design analysis procedures presented herein are also intended for use by engineers and architects involved in the evaluation process. The calculations that are involved are based on the use of simple tables and graphs. An arithmetical calculator is the only tool required. 1.3 Organization and use of the design procedures. The material in this handbook is organized such that there is a progression from general principles at the beginning to more detailed and specific information toward the conclusion. This organization parallels the architectural design process whereby the designer begins with gross building characteristics in schematic design, proceeds to refinements and more detail in design development, and finally completes the design with construction documents. This handbook provides step by step procedures for establishing the solar/thermal characteristics of a building during schematic design and design development. Worksheets are provided throughout as aids to the user in following the design procedures quickly and accurately. - In 4.1, the basic concepts describing the physical characteristics and operating principles of the various types of passive solar heating systems are addressed. The cooling implications of using these systems on buildings is also discussed in general terms. This section should provide the background needed before proceeding to a discussion of climatic considerations in 4.2. - In 4.2, variations in climate and the broad implications of those variations for passive solar design are addressed. Two contour maps of the continental United States are presented. The first map divides the country into four climate regions based on the importance of conservation measures for reducing the space heating load of buildings; the four regions are thus indicative of the severity of the winter climate. The second map defines five-climate regions on the basis of availability of solar energy as a space heating resource. These two maps help one develop a feel for the geographic distribution of passive solar potential because areas of high potential are those in which severe winter conditions coincide with high solar availability. Guidelines for schematic design are presented in 4.3. These guidelines will enable the designer to specify the gross characteristics of a building in a manner that assures good solar/thermal performance in a specified climate region. Alternately, the guidelines are appropriate for use as evaluation tools during the initial screening of designs submitted by prospective contractors. In either case, final decisions should be deferred until a complete design analysis, as described in 4.4 and 5.1, has been performed to fine tune a design under development or to evaluate each candidate design surviving the initial screening of contractor proposals. The introduction to design analysis (4.4) is intended to prepare the reader for subsequent applications. Applied design analysis procedures appropriate for use during design development are presented in 5.1. Worksheets are provided that enable the user to estimate auxiliary heat requirements, assess potential winter overheating problems, determine the incremental cooling load, and evaluate the cost effectiveness of the system. Procedures for refining the design on the basis of analysis results are reviewed in 5.2. In 5.3, example calculations are presented that illustrate application of the design procedures to a four plex family housing unit. This realistic example should prepare the reader for his first experience with passive solar design or evaluation. Finally, a summary of the important points to remember is presented in 5.4. This handbook should provide enough information and guidance to enable a designer to produce cost effective, energy efficient passive solar buildings at any point in the continental United States. #### 2. REFERENCED DOCUMENTS. 2.1 Other Government publications. The following other Government documents publications form a part of this specification to the extent specified herein. Unless otherwise specified, the issues shall be those in effect on the date of the solicitation. #### NAVAL CIVIL ENGINEERING LABORATORY - CR 82.002 Design Calculation Procedure for Passive Solar Houses in Regions with Cold Climate, Volume I. - CR 82.003 Design Calculation Procedure for Passive Solar Houses at Navy Installations in East Coast Regions with Temperate Climate, Volume II. - CR 82.004 Design Calculation Procedure for Passive Solar Houses at Navy Installations in Regions with Warm, Humid Climate, Volume III. - CR 82.005 Design Calculation Procedure for Passive Solar Houses at Navy Installations in the Pacific Northwest, Volume IV. - CR 82.006 Design Calculation Procedure for Passive Solar Houses at Navy Installations in Warm California Climates, Volume $_{ m V}$ - CR 83.040 Passive Solar Design Procedures for Naval Installations. (Application for copies should be addressed to NCEL, Port Hueneme, CA 93041.) DEPARTMENT OF ENERGY LOS ALAMOS NATIONAL LABORATORY (LANL) DOE/CS-0127/2 - Passive Solar Design Handbook, Volume Two. DOE/CS-0127/3 - Passive Solar Design Handbook, Volume Three. (Application for copies should be addressed to the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.) (Copies of publications required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.) 2.2 Other publications. The documents cited in this section are for quidance and information. American Society of Heating, Refrigeration, and Air Conditioning Engineers Handbook (ASHRAE), 1977 Fundamentals Volume. ASHRAE Journal. (N. E. Hager, Jr.) December 1983, pp. 29-32. Input Data for Solar Systems. (V. Cinquemani, J. R. Owenby, and R. G. Baldwin) Ashville, NC, National Climatic Center, November 1978. Generation of Typical Meteorological Years for 26 SOLMET Stations. (I. Hall, R. Prarie, H. Anderson, and Eldon Boes) SAND78-1601, Albuquerque, Sandia Laboratories, August 1978. Thermal Shutters and Shades. (William A. Surcliff) Brickhouse Publishing Company, Andover, Massachusetts, 1980. "How to Design Fixed Overhangs". (Andrew Lau) Solar Age, February 1983, pp 32-38. (Non-Government standards and other publications are normally available from the organizations which prepare or which distribute the documents. These documents also may be available in or through libraries or other informational services.) 2.3 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein (except for associated detail specifications, specification sheets or MS standards), the text of this specification shall take precedence. Nothing in this specification, however, shall supersede applicable laws and regulations unless a specific exemption has been obtained. #### 3. DEFINITIONS 3.1 Definitions of acronyms and symbols used in this handbook. [alpha] - solar aperture absorptance. [alpha] rir - infrared absorptance. $[W-DELTA]T_{\Gamma}I_{\gamma}$ - temperature increment without ventilation (deg.F). [theta] - tilt of solar collector relative to vertical plane (degrees). [rho] - density $(1b/ft^{L}3J)$. [tau] - building time constant (hr). [open phi] - azimuth of solar collector (degrees). a - city parameter. A_[a] - actual roof area (ft $^{L}2^{J}$). $A_{\Gamma}C_{1}$ - solar collection area (ft^L2^J). $(A_{\Gamma}c_1/A_{\Gamma}f_1)_{\Gamma}o_1$ - reference ratio of collector area to floor area. Area - external surface area of a building or thermal zone (ft L2 J). $A_{\Gamma}f_{7}$ - heated floorspace (ft^L2^J). $A_{\Gamma}g_{\overline{1}}$ - ground floor area (ft^L2^J). $A_{\Gamma}i_{7}$ - mass area of element i (ft^L2^J). A_fm₁ - thermal storage mass surface area (ft $^{L}2^{J}$). $A_{\Gamma}n_{7}$ - non-south window area (ft^L2^J). A_[P] - projected area of solar collection aperture on a vertical plane (ft^L2^J). A_{Γ} - roof area projected on a horizontal plane (ft $^{L}2^{J}$). $A_{\Gamma}s_{1}$ - total south wall area (ft^L2^J). $A_{\Gamma}W_{\overline{1}}$ - wall area (ft^L2^J). ACH - air changes per hour. ADR - air density ratio. c - specific heat (Btu/lb-deg.F). C - capital invested (\$). D - solar declination (degrees). DF - diurnal heat capacity thickness function. DD - heating degree days (deg.F-day). DD_{ra} - annual heating degree days (deg.F-day/yr). DDract - annual heating degree days based on actual average indoor temperature (deg.F-day/yr). $DD_{\Gamma}m_{\overline{1}}$ - heating degree days for harshest winter month in a particular location (deg.F-day/month). DHC - diurnal heat capacity (Btu/deg.F). erd, - delivery efficiency. e_{rt1} - total system efficiency. $e_{\Gamma}u_{\overline{1}}$ - utilization efficiency. (erun) ran - annual utilization efficiency. E - annual energy saved (MMBtu/yr). EF - effective heat capacity heat thickness function. EFria - effective heat capacity heat thickness function for element i. EHC - effective heat capacity (Btu/deg.F). f - area factor. F - scale factor. G - effective aperture conductance (Btu/deg.F-day ft^L2^J). h - ceiling height (ft). hr - duration (hours). k - thermal conductivity (Btu/deg.F-ft-hr). K_rb₁ - frontflow/backflow parameter for thermosiphoning air panels. 1 - thickness (ft). L - latitude (degrees). LC - load coefficient (Btu/deg.F-day). LCR - load collector ratio (Btu/deg.F-day ft^L2^J). m - reference month. N - number of months in heating season. NGL - number of glazings. NGL rn - number of glazings of nonsouth
windows. NLC - net load coefficient (Btu/deg.F-day). NLC_[e] - exterior zone (Btu/deg.F-day). NLC rin - interior zone (Btu/deg.F-day). NSF - non-south window fraction. NZONE - number of zones. P - period of diurnal cycle. Prg - ground floor perimeter (ft). P_「t₁ - total external perimeter of the heated floorspace (ft). PR - productivity (Btu/ft^L2^J). Qract - actual annual heating load (Btu/yr). $Q_{\Gamma}A_{\overline{1}}$ - auxiliary heat requirement (Btu). $(Q_{\Gamma}A_{\overline{1}})_{\Gamma}a_{\overline{1}}$ - annual auxiliary heat requirement (Btu). $Q_{\Gamma}D_{\overline{1}}$ - delivered solar energy (Btu). $(Q_{\Gamma}D_{\Gamma})_{\Gamma}a_{\Gamma}$ - annual delivered solar energy (Btu). Q_fE₁ - excess solar energy during reference month (Btu) $Q_{\Gamma}I_{7}$ - annual incremental cooling load (Btu). Qrint - internal heat generation rate (Btu/day). Q_LL₁ - effective building heat load (Btu). $(Q_{\Gamma}L_{7})_{\Gamma}a_{7}$ - annual effective building heat load (Btu). MIL-HDBK-1003/19 $Q \Gamma NJ$ - net building heat load (Btu). - utilizable solar heat (Btu). $Q \Gamma S_{J}$ - steady state building heat load (Btu). QrSL7 QS - monthly solar radiation transmitted through an arbitrarily oriented solar collector (Btu/ft L2 -month). - annual solar radiation transmitted through an QSA arbitrarily oriented solar collector (Btu/ft^L2^J-yr). - annual solar radiation transmitted through a vertical, OTAn south facing aperture with n glazings arbitrarily oriented (Btu/ft^L2^J-yr). - thermal resistance of decorative floor or wall covering Rrd7 (deg.F-ft L2 J-hr/Btu). - total thermal resistance of the roof R_rtot₇ $(\deg.F-ft^{L}2^{J}-hr/Btu)$. R-value - thermal resistance of a material layer or set of layers $(\deg.F-ft^{L}2^{J}-hr/Btu)$. RBASE - thermal resistance of basement walls (deg.F-ft L2 -hr/Btu). - thermal resistance of perimeter insulation RPERIM $(\deg.F-ft^{L_2J}-hr/Btu).$ - thermal resistance of the roof (deg.F-ft^L2^J-hr/Btu). RROOF RTAP - thermal resistance of insulation layer in a thermosiphoning air panel (deg.F-ft^L2^J-hr/Btu). RWALL - thermal resistance of the wall (deg.F-ft ^L2 J-hr/Btu). s - heat capacity scale factor (Btu/deg.F-ft L2J). S - solar radiation absorbed per square foot of collector $(Btu/ft^{L}2^{J})$. $S_{\Gamma}T_{1}$ - total absorbed solar radiation (Btu). SHF - solar heating fraction for reference month. SHF ray - annual solar heating fraction. SLR - monthly solar load ratio. SLR_Fm₇ - minimum monthly solar load ratio. SLR* - scaled solar load ratio. Tracta - actual average indoor temperature (deg.F). Traven - average thermostat setpoint (deg.F). $T_{\Gamma}b_{\overline{1}}$ - base temperature (deg.F). Trez - effective thermostat setpoint (deg.F). T_{Γ} set₁ - thermostat setpoint (deg.F). T - average room temperature with ventilation (deg.F). T_{Γ} - average maximum room temperature without ventilation (deg.F). TAP - thermosiphoning air panels. THICK - thermal storage mass thickness (ft). TLC - total load coefficient (Btu/deg.F-day). TLC rea - effective total load coefficient (Btu/deg.F-day). TLC_[S] - steady state total load coefficient (Btu/deg.F-day). TMY - typical meteorological year. U_[C] - steady state conductance of the passive solar aperture (Btu/hr-ft $^{L}2^{J}$ -deg.F). VTn - solar radiation transmitted monthly through a vertical south facing aperture with n glazings $(Btu/ft^{2}J-month)$. x - dimensionless thickness. X - overhang length (ft). Y - separation (ft). ## 4. GENERAL REQUIREMENTS - 4.1 Basic concepts. The concepts introduced herein are limited to those that are further developed within the remainder of the design procedures. Thus a comprehensive treatment is rejected in favor of one that is directed at areas of particular interest to the Navy in which our understanding is sufficient to warrant a quantitative treatment. - 4.1.1 Direct gain heating. Direct gain buildings are passive solar heating systems in which sunlight is introduced directly to the living space through windows or other glazed apertures as indicated schematically in figure 1. As with all passive solar systems, it is important that the apertures face south or near south in order to achieve high solar gains during the winter heating season and low solar gains during the summer cooling season. Thermal storage mass is essential to the performance and comfort of direct gain buildings. A building that has inadequate mass will overheat and require ventilation, which entails a loss of heat that might otherwise have been stored for night time use. Generally, it is desirable to employ structural mass as a storage medium in order to take advantage of the improved economics associated with multiple use. Insulation should always be placed on the outside of massive elements of the building shell rather than on the inside in order to reduce heat Losses without isolating the mass from the living space. Concrete floor slabs can contribute to the heat capacity of a building provided they are not isolated by carpets and cushioning pads. Heat losses from the slab can be limited by placing perimeter insulation on the outside of the foundation walls. If the structure is fairly light, the heat capacity can be effectively increased by placing water containers in the interior. A variety of attractive containers are available commercially. An overhang, also illustrated in figure 1, is used to shade the solar aperture from the high summer sun while permitting rays from the low winter sun to penetrate and warn the inside of the building. In climates having particularly warm and sunny summers, an overhang may not be sufficient to prevent significant aggravation of the summer cooling load. Sky diffuse and ground reflected radiation enter the living space despite the presence of an overhang and must be blocked by external covers or internal shades. Using movable insulation on direct gain apertures has the advantage of reducing night time heat losses during the winter-as well as eliminating unwanted solar gains during the summer. Direct gain buildings involve less departure from conventional construction than other types of passive solar systems and are therefore cheaper and more readily accepted by most occupants. However, they are subject to overheating, glare, and fabric degradation if not carefully designed; these problems can be minimized by distributing the sunlight admitted to the building as uniformly as possible through appropriate window placement and the use of diffusive blinds or glazing materials. When properly designed for their location, direct gain buildings provide an effective means of reducing energy consumption for space heating without sacrifice of comfort or aesthetic values. FIGURE 1. Direct gain heating system. FIGURE 2. Radiant panel system. - 4.1.2 Daylighting. The daylight delivered to the interior of direct gain buildings is an additional resource that is available year-round. Pleasing uniform illumination can be achieved by using blinds that reflect sunlight toward white diffusive ceilings. The artificial lighting system in many buildings imposes a significant load on the cooling system that may be reduced by daylighting because the fraction of visible light in the solar spectrum is greater than the visible fraction of incandescent or fluorescent lighting. - 4.1.3 Radiant panels. Radiant panels are simple passive solar systems that are inexpensive and well suited as retrofits to metal buildings. A sketch of a radiant panel system is presented in figure 2. Note that the solar aperture consists of one or more layers of glazing material placed over an uninsulated metal panel. The metal panel would ordinarily be a part of the building shell so that a retrofit is constructed by simply glazing an appropriate area on the south side of the structure. Any insulation or other poorly conducting material should be removed from the inner surface of the glazed portion of the metal panel to facilitate heat transfer to the interior. Solar radiation is absorbed on the outer surface of the metal panel after passing through the glazings. The panel becomes hot and gives up heat to the interior by radiation and convection. Thermal mass must be included inside the building shell as with direct gain systems. Usually, only a concrete slab will be available before retrofitting a metal building and it may sometimes be necessary to add water containers to achieve the desired thermal capacitance. Radiant panels perform on a par with direct gain buildings and are likely to be less expensive when used as retrofits to metal buildings. 4.1.4 Thermosiphoning air panels. Thermosiphoning air panels (TAPs) are also appropriate for use on metal buildings either as retrofits or in new construction. Two configurations occur in practice and the first, which is referred to as a frontflow system, is illustrated in figure 3. Again there are one or more glazing layers over an absorbing metal surface but, in this case, the metal panel is insulated on the back side. Heat transfer to the interior occurs via circulation vents cut through the metal panel and its insulation at the upper and lower extremes. Solar radiation absorbed on the the outer surface of the panel is converted to heat and convected to the adjacent air which then rises due to buoyancy forces and passes through the upper vent into the living space. The warm air leaving the gap between the inner glazings and the absorber is replaced by cooler air from the building interior that enters through the lower vents. In this manner, a buoyancy driven loop is established and sustained as long as the temperature in the air gap exceeds that in the living space. Passive backdraft dampers or manually operated vent closures must be employed to prevent reverse circulation at night. Backdraft dampers are usually made of a lightweight plastic material suspended above a metal grid such that air flows freely in one direction but is blocked should the flow attempt to
reverse. The second type of TAP configuration, illustrated in figure 4, is called a backflow system. In a backflow system, the flow channel is behind the absorber plate rather than in front of it. An insulated stud wall is constructed a few inches behind the metal panel and vents are then cut at the top and bottom of the wall. Air in the flow channel thus formed is heated by convection from the back of the absorber panel and a circulation loop is established in the same manner as in a frontflow system. FIGURE 3. Frontflow TAP system. FIGURE 4. Backflow TAP system. TAPs have thermal storage requirements similar to those of direct gain and radiant panel systems. Generally speaking, the best performance will be obtained from passive solar systems associated with high heat capacity structures. Although a backflow TAP performs slightly better than a comparable system in the frontflow configuration, the difference is not significant and construction costs should govern any choice between the two. Both TAP configurations outperform radiant panels and direct gain systems with comparable glazings and thermal storage mass. This performance edge is due to the low aperture conductance of TAPs, which can be insulated to arbitrary levels, thereby limiting night time heat loss. 4.1.5 Thermal storage walls. A thermal storage wall is a passive solar heating system in which the primary thermal storage medium is placed directly behind the glazings of the solar aperture, as illustrated in figure 5. The outer surface of the massive wall is painted a dark color or coated with a selective surface to promote absorption of solar radiation. Solar radiation absorbed on the outer surface of the wall is converted to heat and conducted (or convected in the case of the water walls) to the inner surface where it is radiated and convected to the living space. Heat transfer to the living space is sometimes augmented by the addition of circulation vents placed at the top and bottom of the mass wall. These vents function in the same manner as the vents in a TAP system except that only a portion of the solar heat delivered by the system passes through the vents. A thermal storage wall provides an effective buffer between outside ambient conditions and the building interior; night time heat losses are reduced during the cold winter months, and during the summer, unwanted heat gains are limited. This moderating effect generally enables thermal storage walls to outperform direct gain systems. There are many types of thermal storage walls distinguished by the type of storage medium employed. The options included in the design procedures are reviewed in the following subsections. - 4.1.5.1 Trombe wall. A Trombe wall is a thermal storage wall that employs solid, high density masonry as the primary thermal storage medium. Appropriate thicknesses range from 6 to 18 inches depending on the solar availability at the building site. Sunny climates require relatively thicker walls due to the increased thermal storage requirements. The wall may be vented or unvented. A vented wall is slightly more efficient and provides a quicker warm up in the morning but may overheat buildings containing little secondary thermal storage mass in the living space. - 4.1.5.2 Concrete block wall. Ordinarily, a thermal storage wall would not be constructed of concrete building blocks, because solid masonry walls have a higher heat capacity and yield better performance. However, concrete block buildings are very common in the Navy and offer many excellent opportunities for passive solar retrofits. The south facing wall of a concrete block building can be converted to a thermal storage wall by simply painting the block a dark color and covering it with one or more layers of glazing. Walls receiving this treatment yield a net heat gain to the building that usually covers the retrofit costs rather quickly. The relatively low heat capacity of concrete block walls is offset somewhat by the large amount of secondary thermal storage mass usually available in these buildings. Concrete floor slabs and massive partitions between zones help prevent overheating and otherwise improve the performance of concrete block thermal storage walls. FIGURE 5. Thermal storage wall. FIGURE 6. Sunspace. Concrete block thermal storage walls may also be introduced during the construction of new buildings. For new construction, however, it is advisable to take advantage of the superior performance of solid masonry walls by filling the cores of the block in the thermal storage wall with mortar as it is erected. This process is inexpensive and the resulting performance increment covers the increased cost. The design procedures developed herein are applicable to 8-inch concrete block thermal storage walls with filled or unfilled cores. - 4.1.5.3 Water wall. As the name implies, water walls are thermal storage walls that use containers of water placed directly behind the aperture glazings as the thermal storage medium. The advantage over masonry walls is that water has a volumetric heat capacity about twice that of high density concrete; it is therefore possible to achieve the same heat capacity available in a Trombe wall while using only half the space. Furthermore, a water wall can be effective at much higher heat capacities than a Trombe wall because natural convection within the container leads to an nearly isothermal condition that utilizes all of the water regardless of the wall thickness. The high thermal storage capacity of water walls makes them especially appropriate in climates that have a lot of sunshine. - 4.1.6 Sunspaces. There are many possible configurations for a sunspace but all of them share certain basic characteristics; a representative schematic is presented in figure 6. Sunlight enters the sunspace through south facing glazing that may be vertical or inclined or a combination of the two and is absorbed primarily on mass surfaces within the enclosure; the mass may be masonry or water in appropriate containers and is generally located along the north wall and in the floor. The massive elements provide thermal storage that moderates the temperature in the enclosure and the rate of heat delivery to the living space located behind the north wall. Operable windows and circulation vents in the north wall provide for heat transfer by thermal convection from the sunspace to the living space. The north wall may be an insulated stud wall placed behind containers of water or a masonry wall through which some of the heat in the sunspace is delivered to the building interior by thermal conduction as occurs in a Trombe wall. A sunspace may be semi-enclosed by the main structure such that only the south facing aperture is exposed to ambient air, or may be simply attached to the main structure along the north wall of the sunroom, leaving the end walls exposed. The temperature in a sunspace is not thermostatically controlled but is generally moderate enough for human habitation during most of the day and appropriate for growing plants year round. Amenities are thus provided that compensate for the somewhat higher cost of sunspaces relative to other types of passive solar heating systems. 4.1.7 Incremental cooling load. Unfortunately, not all of the heat delivered to the living space by a passive solar heating system is useful to the occupants. During the winter heating season, part of the delivered solar energy will cause the building to overheat unless ventilation is employed to limit the indoor temperature. It is to be expected that some overheating will occur in most passive solar buildings, but too much excess heat is indicative of a poor design: it may be that the solar aperture is too large or that inadequate thermal storage mass has been provided. During the summer cooling season, a passive solar heating system continues to function although the increased solar elevation angle reduces the radiation flux transmitted through the glazings, particularly if an overhang is employed. However, all heat delivered to the building during the cooling season is unwanted and must be removed either by ventilation or by evaporative or vapor compression cooling systems. A poorly designed passive heating system can significantly aggravate the summer cooling load of a building. In the design procedures, the sum of all unwanted heat delivered to a building by the passive heating system will be referred to as the incremental cooling load. This is clearly an important parameter because it represents the cooling penalty associated with various passive solar designs. - 4.2 General climatic considerations. - 4.2.1 Characteristic weather parameters. All of the discussion in this section is based on two weather parameters that, in certain combinations, may be used to characterize climates with respect to the potential effectiveness of conservation and passive solar measures in reducing energy consumption for space heating. The first of these important parameters is the heating degree days, which is represented by the symbol DD and has units of deg.F-day. In these procedures, DD is calculated by summing the difference between the base temperature and the outside ambient temperature over each hour in the time period of interest and dividing the result by 24 hr/day; all negative terms are omitted from the sum. The base temperature is the thermostat setpoint adjusted to account for the presence of internal heat sources; the time period of interest is usually one month or one year. This method of calculating DD differs from the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) approach and was selected because it yields better accuracy when applied to the analysis of passive solar buildings. Furthermore, the hourly data required for such a calculation is available in the Typical Meteorological Year (TMY) data base that is used consistently throughout these procedures (from Input Data for Solar
Systems and Generation of Typical Meteorolgical Years for 26 SOLMET Stations). The heating degree days is an important weather parameter because the amount of heat lost from a building during a particular time period is directly proportional to DD, i.e., if a building is moved from one location to another having twice as many degree days, the heat loss from the building will double. The second important weather parameter is VT2, the amount of solar energy transmitted through a vertical, south facing, double glazed aperture during a specific time period. The V in VT2 stands for vertical, the T indicates transmitted radiation, and the 2 represents the two glazing layers. The parameter VT2 is important because it quantifies the solar resource available for passive space heating. In the following sections, combinations of VT2 and DD will be used to characterize climates with regard to the relative importance of conservation and passive solar measures for reducing auxiliary heat consumption in buildings. 4.2.2 Importance of conservation measures. The fraction of the monthly heating load of a building that can be met by passive solar strategies depends on certain characteristics of the building design, and for double glazed systems, which are by far the most common, on the ratio VT2/DD; the details of the relationship between the solar heating fraction (SHF) and VT2/DD will be addressed later in 4.4 and 5.1. For the present, it is sufficient to know that the parameter VT2/DD provides an accurate measure of the passive solar potential of a given climate during any selected month. It follows that by considering the value of VT2/DD for each month in the heating season, it is possible to assess the passive solar potential of the climate-for the full annual cycle. One way to do this might be to average VT2/DD over all months in the heating season, but that approach would ignore the fact that it is more important to have high solar heating fractions in cold months with high values of DD than it is in warm months with low values of DD. The solution to this dilemma is to to determine the degree day weighted average of VT2/DD as follows: where the index, m, is the month number, N is the number of months in the heating season, and DD $_{\Gamma}a_{\Gamma}$ is the annual heating degree days. The quantity (VT2/DD) $_{\Gamma}ave_{\Gamma}$ provides the desired measure of the annual passive solar potential of various climates. High values of (VT2/DD) $_{\Gamma}ave_{\Gamma}$ are associated with high values of SHF and conversely. It follows that in climates having low values of (VT2/DD) $_{\Gamma}ave_{\Gamma}$, conservation measures such as insulation, storm windows, weather stripping, etc., will be more important than in climates having high values. If only a small portion of the building load can be displaced with solar energy, then reduction of that load through the use of conservation measures clearly becomes a top priority. A map of the continental United States with contours of constant (VT2/DD) <code>[ave]</code> is presented in figure 7. The values of (VT2/DD) <code>[ave]</code> on the uppermost, middle, and lowest contours are 30, 50, and 90 Btu/deg.F-ft <code>L2J</code>-day, respectively. The three contour lines divide the map into four climate regions that are referred to as mild (MI), moderate (MO), harsh (HA), and very harsh (VH). General descriptions of these climate regions and qualitative comments regarding regionally appropriate design are presented in the next four subsections. 4.2.2.1 Mild climates. The mild climate region includes the southern third of California and Arizona, small parts of the southern extremes of New Mexico, Texas, and Louisiana, and most of the Florida peninsula. In the mild region the winter heating load varies from small to nil and in any case, there is plenty of sunshine available to meet whatever loads do arise. Generally, the small heat loads can be displaced with inexpensive radiant panels or direct gain systems having relatively small solar collection apertures. However, summer cooling loads in this region can be quite high, usually exceeding the winter heating load several times over. It is therefore particularly important to assure that the incremental cooling load associated with the passive heating system does not negate the small savings realized during the winter heating season. The use of defensive countermeasures such FIGURE 7. Principal climate regions. as adjustable shades and shutters that shield the solar aperture from direct and diffuse sunlight during the cooling season is essential. The term defensive cooling refers to strategies or devices that prevent excess heat from entering a building, in contrast to procedures for removing such heat with air conditioning equipment after it has gained entry. Because of the high SHFs obtainable in the mild region, conservation measures are not as important as in regions further north. 4.2.2.2 Moderate climates. The moderate region includes most of California, the southern half of Nevada, the central third of Arizona, and most of New Mexico, Texas, Louisiana, Mississippi, Alabama, Georgia, and South Carolina. The Florida panhandle and most of the North Carolina coast are also included. Thermal storage walls, sunspaces, thermosiphoning air panels, and direct gain systems are all appropriate in this region. The solar apertures will be larger than in the mild region and more thermal insulation will be required. Defensive cooling strategies are also important to overall performance. 4.2.2.3 Harsh climates. The harsh region includes most of Washington, Oregon, Idaho, Nevada, Wyoming, Utah, Colorado, Nebraska, Kansas, Oklahoma, Missouri, Arkansas, Kentucky, Tennessee, Virginia, and North Carolina. Northern parts of Arizona, New Mexico, Texas, Mississippi, Alabama, Georgia, and South Carolina are also included as well as southern parts of Montana, South Dakota, Iowa, Illinois, Indiana, and West Virginia. Finally, the harsh region includes coastal areas in Massachusetts, Rhode Island, New York, New Jersey, Maryland, and all of Delaware. At the northern extremes of the harsh region, night insulation should be considered on direct gain apertures. Otherwise, all passive systems discussed in 4.1 may be adequate in this region; heating loads are substantial making conservation measures very important. Despite the large heating loads, defensive cooling strategies are still required to assure positive net energy savings. 4.2.2.4 Very harsh climates. The very harsh region includes all of North Dakota, Minnesota, Wisconsin, Michigan, Ohio, Vermont, New Hampshire, and Maine; most of Montana, South Dakota, Iowa, Illinois, Indiana, West Virginia, Connecticut, Pennsylvania, and Massachusetts; and parts of Washington, Idaho, Wyoming, Nebraska, Kentucky, Virginia, Maryland, New Jersey, and Rhode Island. Near the boundary between the harsh and very harsh regions or in areas with greater than average sunshine, direct gain systems without night insulation may still be viable provided the aperture is kept fairly small. Thermal storage walls and sunspaces will function well in this region although night insulation may be desirable near the northern boundary; TAPs are a good choice because arbitrarily high levels of fixed insulation can be placed between the collector surface and the living space. Heavy use of conservation measures is critical to performance in the very harsh region. Defensive cooling strategies, though less of a concern than in regions with milder winter climates, should not be ignored. 4.2.3 Solar availability. As previously discussed, the parameter VT2 provides a measure of the availability of solar radiation as a space heating resource during a specified time period. If VT2 were evaluated for the duration of the winter heating season the result would provide some indication of the potential of the site for passive solar heating applications. However, it is more important to have high solar availability during the colder months of the heating season than during the warmer months, and the straight summation involved in evaluation of VT2 does not reflect this fact. A better measure of the effective solar availability is obtained by taking the degree day weighted average of the monthly VT2s that occur during the heating season as follows: A map of the continental United States with contours of constant VT2 $_{\Gamma}$ ave_{\Gamma} is presented in figure 8. The contours are defined by VT2 $_{\Gamma}$ ave_{\Gamma} values of 30, 25, 20, and 15. The four contours divide the map into five regions that are labeled most sunny (MS), very sunny (VS), sunny (SU), cloudy (CL), and very cloudy (VC). These five regions cut across the four principal climate regions defined in figure 7 and form subregions that are related to the appropriate size of solar apertures. As a general rule, the sunnier subregions of a particular principal climate region should have the larger solar apertures. The ideal climate for passive solar applications is one in which high solar availability coincides with a large heat load; large apertures are appropriate in such a climate. In the continental United States, the best climates for passive solar design lie in the subregion formed by the most sunny and harsh climate regions. Solar apertures should be relatively small in the mild climate region because the heat load is small, and relatively small in the very harsh region because solar availability is low. Some general comments on the solar regions defined in figure 8 are presented below. - 4.2.3.1 Most sunny region. This region is limited to the desert southwest and includes major parts of Nevada, Arizona, and New Mexico. Subregions in which the most sunny region overlaps the harsh region are ideal for passive solar heating because of the coincidence of a substantial heating load and excellent solar availability. The most sunny/moderate subregion is also quite good for passive solar
heating. - 4.2.3.2 Very sunny region. The very sunny region forms a complex crescent that bounds the most sunny region. It forms a large, very sunny/harsh subregion in which passive solar applications are very beneficial. - 4.2.3.3 Sunny region. The sunny region forms a still larger crescent about the very sunny region, and includes parts of Florida, Alabama, Georgia, South Carolina, North Carolina, and Virginia. The sunny area cuts completely across the country from North to South and forms subregions with all four principal climate zones. A broad range of passive solar designs is viable across these subregions. - 4.2.3.4 Clouds region. The cloudy region also traverses the country from north to south and forms four types of subregions among which many passive designs are feasible. Parts of the Pacific northwest, the Midwest, and the eastern seaboard are included in the cloudy region. FIGURE 8. Solar availability regions. 4.2.3.5 Very cloudy region. The very cloudy region includes only the extreme Pacific Northwest and the central to eastern Great Lakes area. The Great Lakes area, where the very cloudy region overlaps the very harsh region, is the poorest location in the continental United States for passive solar heating. The Pacific northwest area overlaps the Harsh climate region and is slightly better suited for passive solar applications. Schematic design guidelines that are related to the climate regions appearing in figures 7 and 8 are presented in 4.3. 4.3 Guidelines for schematic design. The objective during schematic design is to develop a rough idea of what the final building will be like. The designer is not concerned with detail at this point but seeks only to establish the basic shape, dimensions, materials, window areas, and insulation levels that will characterize the design; in these procedures, the characteristics of the passive solar heating system are added to the list of more traditional architectural concerns. The guidelines in this chapter provide starting point values for the basic passive solar design parameters; if the user already has a good idea what his building will be like he may skip to 4.4 where the fundamentals of design analysis are introduced. 4.3.1 Building shape and orientation. Passive solar buildings are usually elongated in the east-west direction so that a large south-facing surface is presented to the low winter sun for solar heating, and small east and west-facing surfaces are presented to the northerly rising and setting summer sun to reduce unwanted solar gains. The aspect ratio (east-west dimension divided by north-south dimension) should be at least 5/3, and much larger values are appropriate for large dormitory-like structures. Ideally, passive solar buildings should be no more than two zones deep in the north-south direction. The two zone limit on depth generally allows solar heat collected on the south side of the building to be transported for use to the north side, thereby improving thermal performance. Multi-story buildings are well suited to passive solar design, particularly if the above recommendations on aspect ratio and depth are observed, because of the large vertical surface that may be presented to the winter sun for solar absorption. Orientations that depart from true south by up to 30 degrees are permissible; performance penalties will usually be less than 10 percent. An easterly bias is preferred in applications that require a rapid warm up in the morning, whereas a westerly bias will sometimes improve the performance of buildings that are occupied in the evening because of the improved phasing of heat source and heat load. 4.3.2 East, west, and north windows. Windows not facing south should be kept small while complying with local building codes. Particularly in the colder climates, it is best to place most of the nonsouth window area on the east or west side of the building to take advantage of winter solar gains available during the early morning and late afternoon. All windows, including those facing south, should have at least two glazing layers, and in the harsh and very harsh regions, triple or even quadruple glazing should be considered. Especially in the warmer climates, drapes or better still, movable opaque covers or shades, as described in Thermal Shutters and Shades, are recommended as means to prevent unwanted sunlight from entering the windows during the summer. 4.3.3 Passive heating system characteristics. The interaction between a passive heating system and its environment is a complex process that involves many subtle phenomena. The complexity of the interaction makes it difficult to determine exactly what type of passive system will perform best in a given climate. Ultimately, detailed design analysis calculations of the type to be described later in these procedures may be required to make the final decision. However, a few generalizations may be cited that are useful for selecting candidate systems during the schematic phase of design. The general rules for system selection are based on the steady state conductance ($U_{\Gamma}c_{1}$) of the passive solar aperture. The aperture conductance is the amount of heat that would be lost through the solar aperture if the outside ambient temperature were maintained at 1deg.F below the indoor temperature for a period of one hour; the units of Urcl are Btu/deg.F-ft^L2^J-hr. It is generally true that systems with low values of Urca are better suited for use in areas having relatively severe winter climates than are systems with larger aperture conductances. The climate regions based on the importance of conservation measures that are illustrated in figure 7 provide a convenient measure of winter severity. The selection process based on aperture conductance may be further refined by the observation that it is also more important to have a small Urcz in regions that receive relatively little sun; the solar availability contour map in figure 8 is useful in making this secondary assessment. In summary, passive solar systems having low aperture conductances are recommended for use in regions having severe winter climates with little sunshine. The steady state aperture conductances of thirteen representative passive solar heating systems is presented in table I to aid in the preliminary selection process. The first system in table I, a single glazed direct gain building, is not recommended in any climate region because of the large aperture conductance; even in a mild winter climate where the heating load may not be a problem, the summer cooling load can be seriously aggravated by single glazed apertures. Systems 2 through 5, or any other system with comparable values of Urcl, are well suited for use in the mild climate region. In the moderate region, systems 2 through 9 are appropriate, and in the harsh region systems 4 through 14 may be considered. Finally, in the very harsh region, systems 9 through 14 will yield the best results. Within each of the principal climate regions, the recommended systems having the larger conductances are more appropriate in the sunnier subregions. These guidelines may be useful during the initial system selection process, but the designer should feel free to also consider other systems. In particular, a small amount of direct gain is almost always an asset when combined with other systems having lower aperture conductances. Of course, in the colder regions, it is desireable to place more layers of glazing in the direct gain apertures than would be used in milder climates. TABLE I. Steady state aperture conductances of passive systems. | System
 Number |

 System Type | Urc _l
(Btu/hr-ft ^L 2 ^J -deg.F) | |--------------------|---|--| | 1 |
 Single glazed direct gain. | 1.10 | | 2 |
 Double glazed direct gain. | 0.49 | | 3 |
 Single glazed radiant panel. | 0.49 | | 4 |
 Double glazed radiant panel. | 0.31 | |
 5 |
 Triple glazed direct gain. | 0.31 | |
 6
 | Double glazed direct gain with R-9 night insulation. | 0.27 | |
 7
 |
 Double glazed 12-inch Trombe
 wall. | 0.24 | | 8

 | Double glazed attached sunspace with 40 degree tilt from vertical, masonry common wall, and opaque end walls. | 0.23 | |
 9
 | Double glazed 12 inch Trombe wall with R-9 night insulation. | 0.15 | |
 10
 |
 Single glazed front flow TAP
 with R-11 insulated wall. | 0.073 | |
 11
 | Double glazed front flow TAP with R-11 insulated wall. | 0.068 | |
 12
 | Double glazed backflow TAP with R-11 insulated wall. | 0.064 | |
 13

 | Double glazed attached sunspace with 40 tilt from vertical, R-20 insulated common wall, and opaque end walls. | 0.043 | |
 14
 | Double glazed backflow TAP with R-20 insulated wall. | 0.041 | A more complete list of aperture conductances is available in Appendix A; those appearing in table I provide a representative sample that spans the full range of realistic possibilities and is adequate for the present discussion. 4.3.4 Sizing overhangs. The purpose of a fixed overhang is to reduce unwanted solar gains during the summer while allowing the low winter sun to illuminate the solar aperture and provide heat to the building interior. Sizing an overhang is a difficult problem because the heating season is not symmetrical about the winter solstice, but tends to be displaced toward the new year. Therefore, a design that provides adequate protection from overheating in the fall may tend to reduce the amount of solar energy available for needed space heating in late winter or spring. Since an overhang does not provide protection from sky diffuse or ground reflected radiation, it is often necessary to provide additional countermeasures to prevent overheating during the cooling
season. For this reason, the currently accepted design practice is to size an overhang such that the performance of the passive heating system is minimally affected, and employ additional countermeasures against overheating as required. The sizing procedure introduced below is based on "How to Design Fixed Overhangs", by Andrew Lau. The contour map presented in figure 9 gives the last month for which full illumination of a solar aperture facing within 20 degrees of true south is desired. This map is one of several presented by Lau and represents a direct gain building with an aperture size of 15 percent to 25 percent of the floor area on a moderately well insulated house (R-19 to R-30 roof, R-11 to R-19 wall, 0.5 to 0.75 air changes per hour). Use of the map in figure 9 will yield conservatively sized fixed overhangs in that there should be no degradation of passive solar performance during the heating season although there may be some tendency toward overheating in the fall. Movable shading devices should be employed to control overheating due to asymmetry of the heating season. After determining the last month for which total illumination of the aperture will be allowed, it is an easy matter to fix the overhang geometry. The overhang length is denoted by X and the separation is given by Y, as indicated in figure 10. The ratio X/Y is related to the latitude (L) minus the declination (D) and this relationship is represented graphically in figure 11. The quantity (L-D) may be read from one of the four contour maps in figure 12 that represent the months of January, February, March, and April. Briefly summarizing the sizing procedure, the user first determines the last month of total illumination from the contour map in figure 9; then he reads (L-D) from the contour map for that month from figure 12; finally, the length to separation ratio is obtained from the plot in figure 11. Summer shading is enhanced by selecting the largest practical overhang separation and then calculating the length from the ratio X/Y. Constraints on building geometry will generally limit the overhang separation. 4.3.5 Insulation levels. starting point values for thermal insulation are recommended on the basis of principal climate region and building size, and geometry. The R-values (thermal resistance in deg.F-ft^L2^J-hr/Btu) of walls, including installed insulation and other layers, should lie in the intervals indicated in figure 13 for small (1500 ft^L2^J), one story, single family detached residences. The values suggested in figure 13 are consistent with the results of a study presented in DOE/CS-0127/3, Passive Solar Design Handbook, Volume Three, on the economics of mixing conservation and passive solar strategies that was conducted for the United States Department of Energy. Last month for full illumination of solar aperture facing within 20 degrees of true south. FIGURE 9. FIGURE 10. Overhanging geometry FIGURE 11. Ratio X/Y related to (Latitude - declination). FIGURE 12(a). (Latitude - Declination) for January. FIGURE 12(b). (Latitude - Declination) for February. FIGURE 12(c). (Latitude - Declination) for March. FIGURE 12(d). (Latitude - Declination) for April. FIGURE 13. Principal climate regions (R-values). Larger buildings derive a greater benefit from incidental heating by internal sources because of the reduced external surface area relative to the heated floor area. For two story, single family residences, townhouses, and dormitories or office buildings, the R-values of the wall insulation should be scaled down from the values in figure 13 according to the following formula: $$RWALL = 1/3 (A_{fe_1}/A_{ff_1}) RWALL_{fo_1}$$ (Equation 4.2) where RWALL is the scaled R-value of the wall insulation and RWALL fo_{7} is the reference value for a small, one story building. Furthermore, $A_{7}e_{7}$ is the external surface area of the building (ground level floors are included, for example, but common walls between townhouse units are not), and $A_{7}f_{7}$ is the heated floorspace of the building. Equation 4.2 credits larger buildings for their more effective utilization of internal source heating during the winter by allowing reduced levels of wall insulation. For three reasons, it is common practice to employ higher levels of insulation in the ceiling than the wall: - a. It is cheaper to insulate the ceiling than the wall. - b. Stratification causes larger heat loss rates per unit area of ceiling than per unit wall area. - c. Solar gains on roofs during the summer can cause unwanted heating of the living space beyond that caused by high ambient air temperature. The total-R-value of the roof structure should therefore be scaled directly with the wall R-value as follows: Heat losses through building perimeters and fully bermed basement walls are limited by contact with the soil so that insulation levels need not be so high as for exposed external walls. The following formulas yield reasonable insulation levels for these surfaces: $$RPERIM = 0.75 RWALL$$ (Equation 4.4) Ordinarily, floors are not insulated so as to assure that pipes located below do not freeze. Because of widely varying conditions beneath ground level floors, it is difficult to recommend specific insulation levels. Nevertheless, provided there is no problem with pipes freezing, a reasonable value might be: The insulation levels recommended above are intended only as starting point values. Design analysis calculations described in later sections should be performed before fixing any important design variables. - 4.3.6 Infiltration. Many older buildings have infiltration rates as high as 1.5 air changes per hour (ACH). A reduction to 1.0 ACH may be achieved by employing a plastic vapor barrier; taking care to seal all joints and foam any cracks will generally further reduce the infiltration rate to 0.5 ACH. It is strongly recommended that the infiltration rate be limited to 0.5 ACH for both new construction and retrofits whenever possible. Since extremely low rates may be hazardous to the occupants' health due to the accumulation of indoor pollutants, further reductions in infiltration heat loss should be attempted only through the use of window heat recovery units. Extensive use of these units can yield effective infiltration rates as low as 0.187 and under certain circumstances, the additional expense involved may be justifiable. - 4.3.7 Solar collection area. The solar collection areas recommended in this section are intended to be used as starting point values for the design analysis procedure discussed in 4.4 and 5.1; they are based on the following assumptions: - a. The recommendations presented in the preceding sections on insulation levels and infiltration rates are followed. - b. The levelized heating fuel cost is \$18.55/MMBtu. - c. The heating efficiency is unity. - d. The payback period is ten years. The last three assumptions imply that the ratio of annual energy saved to capital invested (E/C) is $5.4~\mathrm{MMBtu/K}$ \$. Furthermore, the system productivity (PR) which is defined as the amount of energy saved annually per square foot of collector, is given by the product of E/C and the system dependent cost per square foot of solar collection aperture. For small variations of the fuel costs from the assumed value of \$18.55/MMBtu, the aperture size may be adjusted at one-third the rate of fuel cost variation. In other words, a 9 percent increase in fuel cost should be compensated for by a 3 percent increase in aperture size. Nine representative passive solar systems are included in the sizing rules presented in this section. The nine systems and their associated costs per ft $^{L}2^{J}$ of aperture are described in table II. Thermal storage mass is characterized by the thickness in inches (THICK), and by the ratio of the mass surface area to the area of the collection aperture ($A_{\Gamma}m_{\Gamma}/A_{\Gamma}c_{\Gamma}$). For sunspaces, the area of the collection aperture is taken to be the area projected on a vertical plane. For all systems, the thermal storage material is high density concrete. Contour maps of recommended aperture size expressed as percent of floor area are presented in sequence for each of the systems in table II in figures 14 through 22. (Note: Large apertures occur where high solar availability coincides with a large heat load. Small apertures occur where the solar availability is low or the heat load is small.) These aperture sizes, used in conjunction with the previously recommended insulation and infiltration levels, will yield an E/C of 5.4 and a payback period of ten years for the TABLE II. Representative passive system costs.[*] | System
Number | Figure
 Number | System Type | Cost (\$/ft ^L 2 ^J) | |------------------|--------------------|--|---| | 1 | 14 | Double glazed direct gain with THICK = 4 and $A_{f}m_{1}/A_{f}c_{1}$ = 3. | 12 | |
 2
 |
 15
 | Double glazed direct gain with
THICK = 4 and Arm7/Arc7 = 6. | 12 | |]
 3
 |
 16
 | Double glazed, vented Trombe wall with THICK = 12. | 15 | |
 4
 |
 17
 | Double glazed radiant panel with THICK = 4 and $A_{\Gamma}m_{\uparrow}/A_{\Gamma}c_{\uparrow}$ = 3. | 12 | |
 5
 |
 18
 | Double glazed radiant panel
 with THICK = 4 and Arm7/Arc7 = | 12 | |
 6
 |
 19
 | Double glazed thermosiphoning air panel with THICK = 4 and $A_{\Gamma}^{m_{1}}/A_{\Gamma}^{c_{1}} = 3$. | 14 | |
 7
 |
 20
 | Double glazed thermosiphoning airpanel with THICK = 4 and $A_{\Gamma}^{m_{1}}/A_{\Gamma}^{c_{1}} = 6$. | 14 | |
 8

 |
 21

 | Double glazed attached sunspace with glazing tilted 50 degrees to the horizontal and THICK = 12. | 18 | |
 9

 |
 22

 | Double glazed semi-enclosed sunspace with vertical glazing and
THICK = 12. | 15 | $[*]\mbox{Based}$ on typical costs observed by Los Alamos National Laboratory during the 1984-1985 period. nine systems specifically described; similar results can be achieved for other related systems by employing the contour map that is most representative of the system of interest. Similar results are achieved because related systems that operate at higher efficiencies than the six reference cases tend to be more expensive and therefore, require higher productivities in order to pay for themselves in about ten years. The higher productivities can be achieved by keeping the aperture size about equal to that recommended for the cheaper but less efficient systems included in table II. A similar argument holds for systems that are less efficient than the related reference cases. The aperture sizes given in figures 14 through 22 are for single family detached residences with 1500 $\rm ft^{L}2^{J}$ of heated floorspace. For larger or multi-story buildings, the ratio of collector area to floor area should be scaled according to the following formula: $$A_{\Gamma}C_{1}/A_{\Gamma}f_{1} = 1/3 (A_{\Gamma}e_{1}/A_{\Gamma}f_{1})(A_{\Gamma}c_{1}/A_{\Gamma}f_{1}) c_{1}$$ (Equation 4.7) where $A_{\Gamma}e_{\uparrow}$ is the external surface area of the building and $(A_{\Gamma}c_{\uparrow}/A_{\Gamma}f_{\uparrow})_{\Gamma}o_{\uparrow}$ is the reference area ratio read from the appropriate contour map. This building size correction is intended to compensate for the fact that heat from internal sources provides a higher fraction of the building heat load in larger buildings. The sizing rules presented above are intended for apertures facing due south but may be applied to cases involving departures of up to 30 degrees without incurring serious error. Generally, the performance penalty for a passive solar system that is thirty degrees off south is about 10 percent. These initial values should, as previously stated, be checked by design analysis calculations before proceeding to construction documents. 4.3.8 Thermal storage mass. The amount of thermal storage mass required per square foot of solar aperture depends primarily on the solar availability at the building site. The relative solar availability in the continental United States is given by the contour map in figure 8. Masonry thermal storage walls and sunspaces with masonry common walls generally employ a wall thickness of about 12 inches of high density material. This thickness is quite appropriate in the sunny region and to a large extent, in the adjacent cloudy and very sunny regions. However, in the most sunny region a wall thickness of 18 inches should be employed to protect against overheating and fully utilize the available resource. In the very sunny region, wall thicknesses may range from 12 inches to 18 inches depending on which boundary the building site is nearest. At the other extreme, mass walls in the very cloudy region need only be 6 inches thick and in the adjacent cloudy region, thicknesses may range from 6 inches to 12 inches depending on position relative to the boundaries. When water containers are used for thermal storage, either in sunspaces or thermal storage walls, equivalent thicknesses comparable to those recommended for masonry walls are appropriate in all solar availability regions; however, because the heat capacity of water is roughly twice that of high density masonry, significant downward revisions may be permissible. Direct gain apertures, radiant panels, and TAPs all use interior mass for heat storage. Ideally, the interior mass should have a high density and be distributed in thicknesses of 2 inches to 6 inches. Appropriate area ratios $(A_{\Gamma}m_{\gamma}/A_{\Gamma}c_{\gamma})$ are 3 in the very cloudy region, 3 to 6 in the cloudy region, 6 in the sunny region, 6 to 9 in the very sunny region and 9 in the most sunny region. Equivalent or somewhat smaller volumes of water may be used instead of masonry in lightly constructed buildings. Solar aperture area in percent of floorspace area (System 1). FIGURE 14. Solar aperture area in percent of floorspace area (System 2). FIGURE 15. Solar aperture area in percent of floorspace area (System 3). FIGURE 16. Solar aperture area in percent of floorspace area (System 4). FIGURE 17. Solar aperture area in percent of floorspace area (System 5). FIGURE 18. Solar aperture area in percent of floorspace area (System 6). FIGURE 19. Solar aperture area in percent of floorspace area (System 7). FIGURE 20. Solar aperture area in percent of floorspace area (System 8). FIGURE 21. Solar aperture area in percent of floorspace area (System 9). FIGURE 22. 4.3.9 Schematic design worksheet. Worksheet 1 is provided as an aid in organizing and recording the results of the schematic design process described in this chapter. The worksheet is self-explanatory and employs previously defined notation except for the total external perimeter of the heated floorspace ($P_{\Gamma}t_{1}$). The floorspace may occupy one or more levels in a building, and $P_{\Gamma}t_{1}$ comprises the external perimeter of all levels to be included in the analysis. Thus, for a two-story building that is being analyzed as a single unit, $P_{\Gamma}t_{1}$ is the perimeter of the ground floor plus the perimeter of the upper floor. If the two-story unit is a duplex consisting of two distinct thermal zones separated by a vertical plane, it would be appropriate to analyze the thermal zones separately. In this case, the length of the common wall separating the two zones must be subtracted from the perimeter of each level of the zone under consideration. Additional worksheets will be presented later as more detailed design analysis procedures are introduced. Having once read and understood these design procedures, the user will be able to rapidly specify appropriate starting-point values for the primary passive solar parameters. The user may then proceed to completion of a detailed method for design analysis and refinement using only the worksheets and graphical or tabular information provided in this document. An example calculation presented in 5.3 illustrates the entire process. 4.4 Fundamentals of design analysis. The guidelines presented in 4.3 should enable the designer to specify initial values for the design variables that are most strongly related to energy efficient performance in passive solar buildings. Before proceeding any further with the design, an analysis that provides an estimate of the buildings performance should be conducted. By repeating the analysis with selected values of the primary variables it is possible to fine tune the original design in a manner that is consistent with the performance and economic goals of the project. The design analysis procedure introduced herein is quick and accurate in application and therefore well suited to the design of energy efficient buildings. Before discussing the procedure, a set of essential concepts and definitions is presented below. ### 4.4.1 Terminology. - 4.4.1.1 Solar collection area. The area of the glazed portions of the solar collection aperture (A $_{\Gamma}c_{1}$) has units of ft $^{L}2^{J}$. - 4.4.1.2 Projected area. In order to analyze sunspaces that have tilted glazings, it is necessary to know the area of the collector that is projected on a vertical plane. The tilt relative to vertical is given by [theta], and the required relationship is: $$A_{\Gamma}p_{\uparrow} = A_{\Gamma}c_{\uparrow}$$ [multiplied by] cos ([theta]) (Equation 4.8) The projected area (A_fp₇) should be used in place of A_fc₇ for design analysis work on sunspaces. - 4.4.1.3 Transmitted solar radiation. The symbols VT1, VT2, and VT3 represent the amount of solar radiation that is transmitted through one square foot of vertical, south-facing solar aperture during a specific one-month period for single, double, and triple glazed systems, respectively. The corresponding annual sums are indicated by the symbols QTA1, QTA2, and QTA3. In the general case for which the aperture is either tilted or not south-facing, QS is used for the monthly sum and QSA represents the annual sum. The units of all transmitted radiation quantites are $(Btu/ft^{L}2^{J})$ per unit time. - 4.4.1.4 Solar aperture absorptance. The solar aperture absorptance ([alpha]) is the fraction of transmitted solar radiation that is absorbed by the passive heating system. The part not absorbed is lost back through the glazing by reflection. - 4.4.1.5 Absorbed solar radiation. The amount of radiation absorbed by a passive solar heating system per square foot of aperture (S) is given by the product of the transmitted radiation and the absorptance. In the general case, for a one-month period, we have: - S = [alpha] [multiplied by] QS. (Equation 4.9) The units of S are $(Btu/ft^{L}2^{J})$ per unit time. The total amount of solar radiation absorbed by a particular system $(S_{\Gamma}T_{\Gamma})$ is given by the product of S and $A_{\Gamma}C_{\Gamma}$ (or $A_{\Gamma}p_{\Gamma}$ where appropriate) and has units of Btu per unit time. - 4.4.1.6 Net load coefficient. The net load coefficient (NLC) is defined as the amount of heat that would be required to maintain the air temperature in a building -ldeg.F above the outdoor ambient temperature for a period of one day if no heat losses or gains were allowed through the solar aperture. Thus the NLC, which is expressed in units of Btu/deg.F-day, provides a measure of how effectively the nonsolar elements of a building have been sealed and weatherstripped to reduce infiltration and insulated to reduce heat loss by conduction. A procedure for obtaining a quick estimate of the NLC will be presented in 5.1.1. - 4.4.1.7 Load collector ratio. The load collector ratio (LCR) is the NLC divided by the solar collection area (A_Γc₇), or, in the case of sunspaces with tilted glazings, it is the NLC divided by the projected area (A_Γp₇). The units of LCR are Btu/deg.F-day ft $^{L}2^{J}$ and the
defining equation is: LCR NLC/A_{FC} (Equation 4.10) 4.4.1.8 Total load coefficient. The total load coefficient (TLC) is the sum of the NLC and the load coefficient of the solar aperture and as such, provides a measure of the total building heat loss with no credit taken for solar gains. One of two values for the solar aperture conductance may be selected depending on the application at hand. If the steady state aperture conductance ($U_{\Gamma C_1}$), expressed in Btu/hr-ft^L2^J-deg.F, is selected, then: TLC $_{\Gamma}S_{7} = NLC + 24$ [multiplied by] $U_{\Gamma}C_{7}$ [multiplied by] $A_{\Gamma}C_{7}$ (Equation 4.11) where TLC $_{\Gamma}$ s $_{\rceil}$ is the steady state total load coefficient. If on the other hand, the effective aperture conductance (G), expressed in Btu/deg.F-day ft $_{\square}$ L2 $_{\square}$, is selected, then: TLC re7 = NCL + G [multiplied by] Arc7 where TLC_{Pe} is the effective total load coefficient. The effective conductance (G) is a system correlation parameter, as will be expanded on in 5.1.1, and includes the effect of solar aperture dynamics. The appropriate choice of TLC parameters will be specified for each application in these procedures. - 4.4.1.9 Thermostat setpoint. The thermostat setpoint ($T_\Gamma set_1$) is the temperature setting of the thermostat that controls the auxiliary heating system. - 4.4.1.10 Diurnal heat capacity. The diurnal heat capacity (DHC) is the amount of heat that can be stored in the thermal mass of a building, per unit room air temperature swing, during the first half of a 24-hour cycle and returned to the space during the second half of the cycle. The performance of passive solar buildings is enhanced when the DHC is elevated. Procedures for calculating this important parameter will be presented in 5.1. The DHC has units of Btu/deg.F. - 4.4.1.11 Effective heat capacity. The effective heat capacity (EHC) is a correlating parameter that relates the thermal performance of otherwise identical direct gain buildings that have arbitrary thermal storage media arranged in various geometric configurations. As such, the EHC, which has units of Btu/deg.F of solar aperture, provides a measure of the amount of heat that may be stored in the thermal mass of a building during one day and returned to the room air on the same day or on succeeding days at times and rates that lead to improvements in building performance. Improvements in solar thermal performance occur when stored solar energy is delivered to the room air in phase with the building thermal load, thereby reducing auxiliary heating requirements. A nomograph for the EHC will be presented in 5.1. - 4.4.1.12 Effective thermostat setpoint. The analysis methods presented in this document require the use of a constant thermostat setpoint. Because control strategies involving nightime setbacks are advantageous due to the resultant reduction in auxiliary heat consumption, a procedure has been developed for relating building and control parameters to a constant effective thermostat setpoint ($T_{\Gamma}e_{\uparrow}$); this procedure is described in 5.1. The temperature $T_{\Gamma}e_{\uparrow}$ should be used in place of $T_{\Gamma}set_{\uparrow}$ for the analysis of any building that employs a control strategy. - $4.4.1.13\,$ Base temperature. The base temperature (T_fb_1) is the thermostat setpoint (or the effective setpoint) adjusted in a manner that accounts for internal-source heating by people, lights, appliances, office equipment, or any other device not primarily intended as an auxiliary heat source. The base temperature is given by: $T_{\Gamma}b_{1} = T_{\Gamma}set_{1} - Q_{\Gamma}int_{1}/TLC_{\Gamma}s_{1}$, (Equation 4.13) (Equation 4.12) where $Q_{\Gamma}int_{\uparrow}$ (Btu/day) is the internal heat generation rate. Use of $T_{\Gamma}b_{\uparrow}$ rather than $T_{\Gamma}set_{\uparrow}$ in heat loss calculations is a simple and reasonably accurate way to include the effect of internal source heating on building performance. Unless other information is available, $Q_{\Gamma}int_{\uparrow}$ can be taken equal to 20,000 Btu/day per person. - 4.4.1.14 Heating degree days. The heating degree days (DD) is the hourly summation of the difference between a specified base temperature and the ambient temperature for a certain time interval, where only positive terms are included in the summation, and the result is divided by 24. The units of DD are deg.F-day and the time interval of interest is generally one month or one year. - 4.4.1.15 Effective building heat load. The effective building heat load ($Q_{\Gamma}L_{\Gamma}$) is given by the product of the effective total load coefficient and the heating degree days for the time period of interest. Thus: $$Q_{\Gamma}L_{1} = TLC_{\Gamma}e_{1}$$ [multiplied by] DD , (Equation 4.14) where the units of $Q_{\Gamma}L_{\Gamma}$ are Btu. 4.4.1.16 Net building heat load. The net building heat load (Q_{\(\bar{I}\)N_\(\bar{I}\)) is the product of the net load coefficient and the heating degree days for the time period of interest. The defining equation is:} $$Q_rN_1 = NLC \text{ [multiplied by] DD },$$ (Equation 4.15) and the units are Btu. 4.4.1.17 Steady state heat load. The steady state heat load (QrSL7) is the actual total heat load for a specified time period. The defining equation is: $$Q_{\Gamma}SL_{7} = TLC_{\Gamma}s_{7}$$ [multiplied by] DD (Equation 4.16) and the units are Btu. 4.4.1.18 Solar load ratio. The solar load ratio (SLR) is the ratio of the amount of solar radiation absorbed by the system to the effective building heat load. The defining equation is SLR = S [multiplied by] $$A_{\Gamma}c_{1}/Q_{\Gamma}L_{1}$$, (Equation 4.17) or $$SLR = S_{\Gamma}T_{\gamma}/Q_{\Gamma}L_{\gamma}$$ (Equation 4.18) For tilted apertures in sunspaces, $A_{\Gamma}p_{\uparrow}$ must be substituted for $A_{\Gamma}c_{\uparrow}$. The solar load ratio is dimensionless. - 4.4.1.19 Auxiliary heat requirement. The auxiliary heat requirement $(Q_{\Gamma}A_{\Gamma})$ is the amount of heat that must be supplied by a conventional back-up heating system to maintain the building temperature at $T_{\Gamma}\text{set}_{\Gamma}$ for a specified time period; the time period of interest usually has a duration of one month or one year. If a building receives no solar heat, $Q_{\Gamma}A_{\Gamma}$ will equal the building heat load whereas $Q_{\Gamma}A_{\Gamma}$ will be zero if the entire load is met by solar energy. The auxiliary heat requirement is the bottom line measure of passive solar heating performance. - 4.4.1.20 Solar heating fraction. The solar heating fraction (SHF) is defined by the equation: $$SHF = 1 - Q_{\Gamma}A_{\Gamma}/Q_{\Gamma}L_{\Gamma} , \qquad (Equation 4.19)$$ and is dimensionless. 4.4.2 Heat to load ratio nomograph. The primary design analysis tool provided in these procedures is the nomograph for the annual heat to load ratio, $(Q_{\Gamma}A_{\Gamma}/Q_{\Gamma}L_{\Gamma})_{\Gamma}a_{\Gamma}$, presented in figure 23. In this figure, the quantity $(Q_{\Gamma}A_{\Gamma}/Q_{\Gamma}L_{\Gamma})_{\Gamma}a_{\Gamma}$ is plotted as a function of the minimum monthly scaled solar load ratio, SLR*, for a series of values for the city parameter (a). The city parameter depends primarily on geographic location; tabulated values are presented in the weather tables in Appendix B, which will be fully explained in 5.1. The scaled solar load ratio is given by the relation: $$SLR* = F \text{ [multiplied by] } SLR_{rm_1},$$ (Equation 4.20) where F is a system dependent scale factor that is tabulated along with G, $U_{\Gamma}C_{1}$, and other system-dependent parameters in Appendix A; a complete explanation of Appendix A is included in 5.1. The quantity $SLR_{\Gamma}m_{1}$ is the minimum monthly solar load ratio for the building of interest at the selected location; $SLR_{\Gamma}m_{1}$ can easily be evaluated using data provided in the weather tables. Having obtained the heat to load ratio from figure 23, it is an easy matter to calculate the annual auxiliary heat requirement as follows: $(Q_{\Gamma}A_{\Gamma})_{\Gamma}a_{\Gamma} = (Q_{\Gamma}A_{\Gamma}/Q_{\Gamma}L_{\Gamma})_{\Gamma}a_{\Gamma} \; [\text{multiplied by}] \; (Q_{\Gamma}L_{\Gamma})_{\Gamma}a_{\Gamma} \; , \quad (\text{Equation 4.21})$ where $(Q_{\Gamma}L_{\Gamma})_{\Gamma}a_{\Gamma}$ is the annual effective building heat load. - 4.4.3 System efficiencies. - 4.4.3.1 Delivery efficiency. The delivery efficiency (e $_{\Gamma}d_{\gamma}$) is defined as the fraction of absorbed solar energy that is actually delivered to the living space, or: $$e_{\Gamma}d_{1} = Q_{\Gamma}D_{1}/S_{\Gamma}T_{1}$$, (Equation 4.22) where $Q_{\Gamma}D_{\overline{1}}$ is the delivered energy. Direct gain buildings have a delivery efficiency of unity because the living space itself is the solar collector. Thermal storage walls, on the other hand, absorb energy on their outer surface and deliver heat to the interior by conduction through a masonry medium or by convection through water. Radiant panels must radiate and convect heat to the interior subsequent to absorption on the outer surface whereas TAPs convect heat to the interior through vents provided for that purpose. Regardless of what transport mechanism is involved, all passive solar systems except direct gain have delivery efficiencies less than one because part of the absorbed energy is lost back out through the glazing before it can be delivered to the interior. The delivery efficiencies of all passive solar systems addressed in this document are tabulated in Appendix A. 4.4.3.2 Utilization efficiency. The utilization efficiency (e_{\Gamma}u_{\bar{1}}) is the fraction of delivered solar energy that provides useful heat. The defining equation is: $$e_{\Gamma}U_{\Gamma} = Q_{\Gamma}S_{\Gamma}Q_{\Gamma}D_{\Gamma}$$, (Equation 4.23) where: $$Q_{\Gamma}S_{\gamma} = Q_{\Gamma}SL_{\gamma} - Q_{\Gamma}A_{\gamma}$$, (Equation 4.24) is the utilizable solar heat. Systems with
low utilization efficiencies are to be avoided because delivered solar energy that is not utilizable must be vented to avoid overheating the building. Typically, direct gain systems will have relatively low utilization efficiencies although overheating can be kept within acceptable limits by sizing the aperture properly and providing adequate thermal storage mass. 4.4.3.3 Total efficiency. The total system efficiency (e_ft₁) is the fraction of absorbed solar energy that ultimately provides useful solar heat, or: $$e_{\Gamma} = Q_{\Gamma} S_{\Gamma} / S_{\Gamma} T_{\Gamma}$$, (Equation 4.25) which is equivalent to: $$e_{\Gamma}t_{\uparrow} = e_{\Gamma}d_{\uparrow}$$ [multiplied by] $e_{\Gamma}u_{\uparrow}$ (Equation 4.26) Thus, $e_{\Gamma}t_{\Gamma}$ depends on the efficiencies of delivery and utilization, and is an excellent measure of solar heating potential. #### 5. DETAILED ENGINEERING ### 5.1 Applied design analysis. 5.1.1 Net load coefficient worksheet. A simple procedure for estimating the net load coefficient is presented in this section. The method was adapted from DOE/CS-0127/2 and DOE/CS-0127/3, DOE Passive Solar Design Handbook, Volumes Two and Three; and although originally intended for single-family detached residences and small office buildings, is readily applicable to more complex structures. The procedure consists of adding together several estimated contributions to building heat loss as outlined on Worksheet 2. In order to determine the heat loss contributions, a number of design parameters must be specified. Start by recording the total external perimeter ($P_{\Gamma}t_{1}$) from Worksheet 1. Next, specify the area ($A_{\Gamma}g_{1}$), and external perimeter ($P_{\Gamma}g_{1}$) of the ground floor alone followed by the horizontally projected roof area ($A_{\Gamma}r_{1}$) and the total south wall area ($A_{\Gamma}s_{1}$) including windows and other solar apertures. Continuing to specify parameters for Worksheet 2, you will need the ceiling height (h) and the non-south window fraction (NSF) which is defined as the fraction of all external walls, except that facing south, that is occupied by windows. The non-south window fraction will normally be between 0.05, for a situation with minimal window area, and 0.10 for a case with ample window area. Next, enter the number of glazings in the non-south windows (NGL $_{\Gamma}$ n_1) and the infiltration rate in air changes per hour (ACH). Finish this part of the worksheet by entering the air density ratio (ADR) which is a function of elevation as illustrated in figure 24. Since many Navy bases are located near sea level an ADR of unity is frequently appropriate. In the next part of Worksheet 2, two parameters, the non-south window area (Arn1) and the wall area (Arw1) must be calculated using previously recorded quantities. The wall area is defined as the total area of all external walls excluding windows and solar apertures. The various contributions to building heat loss are calculated and summed in the final part of the worksheet. The necessary equations are given and all parameters called for are available from the first two parts of Worksheet 2 or from Worksheet 1. A list of R-values of building materials from NCEL CR 82.002 is presented in table III and R-values for air films and air spaces, also from NCEL CR 82.002 are given in table IV. The original source of the data is the ASHRAE Fundamentals Handbook. The information in tables III and IV is useful for calculating the total R-value of layered elements in the building shell; simply add together the R-values of each layer, air gap and air film to get the total R-value. Calculate RROOF of a vaulted ceiling with no attic by determining the total R-value of the roof and scaling that value to the horizontally projected area as follows: $RROOF = R_{\Gamma}tot_{\Gamma}$ [multiplied by] $(A_{\Gamma}a_{\Gamma}/A_{\Gamma}r_{\Gamma})$, (Equation 5.1) FIGURE 24. Air density ratio versus elevation. where Aa is the actual roof area and Rtot is the total R-value of the roof element. If the roof is pitched over a horizontal ceiling with an attic, two possibilities exist: (1) If the attic is vented RROOF is the total R-value of the ceiling alone; (2) If the attic is not vented, RROOF is the sum of the roof contribution, given by equation 5.1, and the ceiling contribution, plus an allowance for the air gap between the two. If the surfaces bounding the attic are non-reflective, use an R-value of 0.6 for the air gap and a value 1.3 if the surfaces are highly reflective. Worksheet 2 is designed to help the user obtain an estimate of the NLC after completing the schematic design process outlined on Worksheet 1. Alternately, the second worksheet may be used as the starting point on subsequent trial designs as the user iterates to improve the performance of his building. If the building of interest is a townhouse or other larger structure containing more than one control zone, Worksheet 2 may still be used to estimate the NLC. By including the complete structure in the analysis, as though only one thermal zone were present, one can determine the overall los characteristics of the building and estimate the total size of all solar apertures required to provide a certain level of performance. However, this overall approach does not help the user to partition the solar aperture amonthe various thermal zones. TABLE III. R-Factors of building materials. | | Dorotho | R-Value | | |---|--------------------------------------|----------------|------------| |
 Material and Description | Density | per inch | for listed | | Haterial and bescription | (lb/ft ^L 3 ^J) | | | | Building boards, panels, flooring | | | | | Asbestos cement board | 120 |
 0.25 | | | Asbestos cement board 1/8-inch | 120 | j j | 0.03 | | Gypsum or plaster board 3/8-inch | 50 | | 0.32 | | Gypsum or plaster board 1/2-inch | 50 | | 0.45 | | Plywood (see Siding materials) | 34 | 1.25 | | | Sheating, wood fiber | | | | | (impregnated or coated) 25/32-inch | 20
) 26 |
 2.38 | 2.06 | | Wood fiber board (laminated or homogenous
 Wood fiber, hardboard type |) | 2.38
 0.72 | | | Wood fiber, hardboard type | 65 | 0.72
 | 0.18 | | Wood subfloor 25/32-inch | |
 | 0.98 | | Wood hardwood finish 3/4-inch | | j j | 0.68 | | Building paper | | | | |
 Vapor-permeable felt | |
 | 0.06 | | Vapor-seal, 2 layers of mopped 15 lb felt | |
 | 0.12 | | Vapor-seal plastic film | | ļ i | negl. | |
 Finish materials | | | | | Carpet and fibrous pad | | l I |
 2.08 | | Carpet and rubber pad | | | 1.23 | | Cork tile 1/8-inch | | j i | 0.28 | | Terrazzo 1-inch | | ļ ļ | 0.08 | | Tile (asphalt, linoleum, vinyl, rubber) | | | 0.05 | | Gypsum board 1/2-inch | | | 0.45 | | Gypsum board 5/8-inch | | | 0.56 | | Hardwood flooring 25/32-inch | |
 | 0.68 | |
 Insulating materials
 | |

 | | | Blankets and batts: | į | į i | | | Mineral wool, fibrous form (from rock, | 0.5 | 3.12 | | | slag, or glass) | 1.5-4.0 | 3.12 | | | Wood fiber | 3.2-3.6 | 4.00 | | | Boards and slabs: | | | | | Cellular glass 30deg.F Cork board 30deg.F | | 2.70 | | | Cork board 30deg.F 30deg.F | | 3.85
3.45 |
 | | Glass fiber 90deg.F | : | 3.45 | | | 30deg.F | ! | 4.55 | | | Expanded rubber (rigid) 75deg.F | : | 4.55 | | | Expanded polyurethane (R-11 blown; | | j | İ | | 1-inch thickness or more) 100deg.F | 1.5-2.5 | 5.56 | i | | 25deg.F | | 5.88 | | | Expanded polystyrene, extruded 75deg.F | : | 3.85 | | | 30deg.F | | 4.17 | | TABLE III. R-Factors of building materials. (Cont.) | Material and Deggription | | | R-Value | | |--|--------------------|--|-----------------------|-------------------------| | | | Density | | for linted | | Material and Description | |
 (lb/ft ^L 3 ^J) | per inch
thickness | for listed
thickness | | Expanded polystyrene molded beads | 75deg.F
30deg.F | | 3.57
3.85 | | | Mineral fiberboard | | | | | | Core or roof insulation | j | 16-17 | 2.94 | j | | Acoustical tile | | 21 | 2.70 | | | Mineral fiberboard, molded acoust: tile | ical | 23 | 2.38 | | | Wood or cane fiberboard | | | | | | acoustical tile | 1/2-inch | | | 1.19 | | interior finish | | 15 | 2.86 | | | insulating roof deck | 1-inch | | | 2.78 | | | 2-inch | | | 5.56 | | Shredded wood (cemented, preformed | 3-inch |
 22 |
 1.67 | 8.33 | | Loose fills: | a stabs) | | | | | Macerated paper or pulp | | 2.5-3.5 | 3.57 | ! | | Mineral wool | 90deg.F | | 3.33 | | | Perlite (expanded) | 30deg.F
90deg.F | | 4.10
2.63 |
 | | Perfice (expanded) | 30deg.F | | 2.74 | | | Vermiculite (expanded) | 90deg.F | | 2.08 | | | | 30deg.F | | 2.27 | | | Sawdust or shavings | J | 8.0-15 | 2.22 | | | Masonry materials, concretes | | | | | | Cement mortar | | 116 | 0.20 | | | Gypsum-fiber concrete (87.5 percen | nt | | | | | gypsum, 12.5 percent concrete) | | 51 | 0.60 | | | Lightweight aggregates | | 120 | 0.19 | | | <pre>(expanded shale, clay or slate;
expanded slags, or cinders;</pre> | | 100
80 | 0.28
0.40 | | | pumice; perlite or vermiculite | • | l 60 | 0.59 | | | cellular concretes) | , | 40 | 0.86 | | | | | 20 | 1.43 | | | Sand and gravel or stone aggregate | e | l | İ | İ | | <pre>(oven-dried) Sand and gravel or stone aggregate</pre> | e | 140 | 0.11 | | | (not-dried) | - | 140 | 0.08 | | | Stucco | | 116 | 0.20 | | | Masonry units | | | | | | Brick, common (typical value) | |
 120 | 0.20 | | | Brick, face (typical value) | | 130 | 0.20 |
 | | Clay tile, hollow | | 155 | | | | 1 cell deep | 3-inch | | | 0.80 | | 1 cell deep | 4-inch | | | 1.11 | | 2 cells deep | 6-inch | | | 1.52 | | 2 cells deep | 8-inch | | | 1.85 | | 3 cells deep | 10-inch | | | 2.22 | | 3 cells deep | 12-inch | | | 2.50 | TABLE III. R-Factors of building
materials. (Cont.) | | |
 Density | R-Value | | |--------------------------------------|------------|--|-----------------------|-------------------------| |
 Material and Description
 | | Density

 (lb/ft ^L 3 ^J) | per inch
thickness | for listed
thickness | | Concrete block, 3 oval core | | | | | | Sand and gravel aggregate | 4-inch | | | 0.71 | | | 8-inch | i i | | 1.11 | | | 12-inch | | | 1.28 | | Cinder aggregate | 3-inch | | | 0.86 | | | 4-inch | | | 1.11 | | | 8-inch | | | 1.72 | | | 12-inch | | | 1.89 | | Lightweight aggregate | 3-inch | | | 1.27 | | expanded shale, clay or slate | 4-inch | | | 1.50 | | or slag; pumice) | 8-inch | | | 2.00 | | | 12-inch | | | 2.72 | | Concrete blocks, rectangular core | | | | | | Sand and gravel aggregate | | | | | | 2 core, 36 lb[*] | 8-inch | | [| 1.04 | | same, filled cores[**] | | | | 1.93 | | Lightweight aggregates | | | | | | 3 core, 19 lb[*] | 6-inch | | | 1.65 | | same, filled cores[**] | | | | 2.99 | | 2 core, 24 lb[*] | 8-inch | | | 2.18 | | same, filled cores[**] | 10 ! 1 | | | 5.03 | | 3 core, 38 lb[*] | 12-inch | | | 2.48 | | same, filled cores[**] | |
 |
 0.00 | 5.82 | | Stone, lime or sand | |
 150 175 | 0.08
 0.05 | | | Granite, marble
 Adobe | 10-inch | 150-175
 | 0.05
 | 2.78 | | Adobe
 | 14-inch |
 | | 3.89 | | | 14-111011 | | | 3.09 | |
 Plastering Materials
 | | | | | |
 Cement plaster, sand aggregate | | l 116 | 0.20 | | | Gypsum plaster | | i | | | | Lightweight aggregate | 1/2-inch | 45 | i | 0.32 | | Lightweight aggregate | 3/8-inch | 45 | j | 0.39 | | Same, on metal lath | 3/4-inch | i i | | 0.47 | | Perlite aggregate | | 45 | 0.67 | | | Sand aggregate | | 105 | 0.18 | | | Same, on metal lath | 3/4-inch | | | 0.10 | | Same, on wood lath | 3/4-inch | | | 0.40 | | Vermiculite aggregate | | 45 | 0.59 | | | Roofing materials | | | | | |
 Asbestos-cement shingles | |
 120 | | 0.21 | | Asphalt roll roofing | | 120
 70 | | 0.15 | | Built-up roofing | 3/8-inch | 70
 70 | | 0.44 | | Slate roofing | 1/2-inch | | | 0.05 | | Wood shingles | 1,2 111011 |
 | | 0.94 | TABLE III. R-Factors of building materials. (Cont.) | | | D | R-Value | | |---|--------------------------|--------------------------------------|-----------|--------------| |
 Material and Description | | Density
 | per inch | for listed | | | | (lb/ft ^L 3 ^J) | thickness | thickness | | Built-up roofing | | | | 0.33 | | Siding materials | | | | | |
 Shingles | | | | | | Asbestos-cement | 1 | 120 | | 0.21 | | Wood, 16-inch with 7-1/2-ind
 Wood, double 16-inch width | |
 | | 0.80 | | 12-inch exposure | V I CII | | | 1.19 | | Wood, plus insulating backer | | | ļ | | | board | 6/16-inch | | | 1.40 | | Siding
 Asbestos-cement lapped | 1/4-inch |
 | | 0.21 | | Asphalt roof siding | 1/4 111611 | | | 0.15 | | Asphalt insulating siding | 1/2-inch | | j | 1.46 | | Wood, drop (1-inch X 8-inch) | | | | 0.79 | | Wood, drop (1/2-inch X 8-inc
Wood, bevel (3/4-inch X 10-inch 10- | |
 |
 | 0.81
1.05 | | Plywood, lapped | 3/8-inch | | | 0.59 | | Plywood | 1/4-inch | | [| 0.31 | | | 3/8-inch | | | 0.47 | |
 | 1/2-inch
5/8-inch |
 |
 | 0.62
0.78 | | | 3/4-inch | | | 0.94 | | Stucco | | 116 | 0.20 | | | Sheathing, insulating board | 1/2-inch |
 |
 | 1.32 | | (regular density) | 25/32-inch |
 | | 2.04 | | Woods | |
 | | | | Hardwoods (maple, oak) | | 45 | 0.91 | | | Softwoods (fir, pine) | 05/20 1 | 32 | 1.25 | | | | 25/32-inch
1-5/8-inch | 32
 32 |
 | 0.98
2.03 | | | 2-5/8-inch | 32 | | 3.28 | | | 3-5/8-inch | 32 | | 4.55 | | Particle board | 1 2 | | | 1 05 | | Low density, 37 lb/ft L3 Medium density, 50 lb/ft L3 | 1-inch
1-inch |
 |
 | 1.85
1.06 | | High density, 62.5 lb/ft ^L 3 | 1-inch | | | 0.85 | | Wood doors, solid core | 1-inch | | <u> </u> | 1.56 | | | 1-1/4-inch
1-1/2-inch |
 | | 1.82
2.04 | |
 | 1-1/2-1ncn
2-inch |
 |
 | 2.33 | | | | | | | ^[*]Weights of blocks approximately 7-5/8-inch high by 15-3/8-inch long. ^[**]Vermiculite, perlite, or mineral wool insulation. TABLE IV. R-values of air films and air spaces. | | | R-va: | lue for Air Film | m on: | |---|--|--|--|--| | Type and Orientation of Air Film | Direction of Heat Flow | Non-
reflective
surface | Fairly
 reflective
 surface | Highly reflective surface | | Still air: Horizontal Horizontal 45deg. slope 45deg. slope Vertical | up
down
up
down
across | 0.61
0.92
0.62
0.76
0.68 | 1.10
2.70
1.14
1.67
1.35 | 1.32
4.55
1.37
2.22
1.70 | | Moving air: 15 mph wind 7.5 mph wind | any[*]
any[**] | 0.17
0.25 |

 |

 | | | | R-value for Air Space Facing: | | | | Orientation & Thickness of Air Space | Direction of Heat Flow | Non-
reflective
surface | Fairly
reflective
surface | Highly
reflective
surface | | Horizontal 1/4" 4" 3/4" 4" 3/4" 1-1/2" 4" 3/4" 1-1/2" 4" 4" 4" | up[*]
 up[**]
 down[*]
 down[**] | 0.87
0.94
0.76
0.80
1.02
1.14
1.23
0.84
0.93
0.99 | 1.71
1.99
1.63
1.87
2.39
3.21
4.02
2.08
2.76
3.38 | 2.23
2.73
2.26
2.75
3.55
5.74
8.94
3.25
5.24
8.03 | | 45deg. slope 3/4" 4" 3/4" 4" 3/4" 4" 3/4" 4" 4" 4" | up[*] up[**] down[*] down[**] | 0.94
0.96
0.81
0.82
1.02
1.08
0.84
0.90 | 2.02
2.13
1.90
1.98
2.40
2.75
2.09
2.50 | 2.78
3.00
2.81
3.00
3.57
4.41
3.34
4.36 | | Vertical 3/4" 4" 3/4" 4" | across[*] across[**] | 1.01
1.01
0.84
0.91 | 2.36
2.34
2.10
2.16 | 3.48
3.45
3.28
3.44 | One side of the air space is a non-reflective surface. [*]Winter conditions. [**]Summer conditions. A more accurate and general approach for multi-zone structures involves calculating the NLC separately for each control zone in the structure. In order to implement this approach, the user must apply Worksheet 2 for each control zone, bearing in mind the following differences in interpretation: - a. Floors, ceilings, or walls that separate one control zone from another should be excluded from the summation of terms that contribute to the NLC. This procedure is equivalent to assuming there is no heat transfer between zones. - b. The total perimeter of each control zone is calculated as before by taking the combined length of all external walls of all floors. In this case, however, the perimeter of each floor will not necessarily form a closed loop because walls that separate control zones (these walls are always internal) must be excluded. In summary, Worksheet 2 may be used to obtain an estimate of the total NLC of any structure or, applying the above constraints, to find the component NLC of any zone in a complex structure. 5.1.2 Calculation of the EHC and the DHC. The EHC of any direct gain or radiant panel building with multiple thermal storage elements is given by: $$EHC = \frac{45.5 \ [1 - e^{-0.22} \ (A_{\Gamma}m_{1}/A_{\Gamma}c_{1})}{(A_{\Gamma}m_{1}/A_{\Gamma}c_{1})}$$ N [SIGMA] Ariq [multiplied by] sriq [multiplied by] EFriq (Equation 5.2) i=1 where the indicated summation is taken over the N thermal storage elements. The total mass surface area $(A_{\Gamma}m_{1})$ equals the sum of the individual surface areas $(A_{\Gamma}i_{1})$ of the mass elements in the building, or: $$A_{\Gamma} m_{\uparrow} = [SIGMA] A_{\Gamma} i_{\uparrow}$$ (Equation 5.3) $$i=1$$ The quantity
$s_{\Gamma}i_{\Gamma}$ in equation 5.2 is a heat capacity scale factor that is related to the material properties of element i through the relation: $$s_{ri_1} = 1.95 [SQRT [rho]_{ri_1}c_{ri_1}]$$ (Equation 5.4) where $[\text{rho}]_{\Gamma i \gamma}$ and $c_{\Gamma i \gamma}$ are the density and specific heat, respectively, of the material in element i. The quantity $\text{EF}_{\Gamma i \gamma}$ is the EHC thickness function for element i and is plotted as a function of x, the dimensionless thickness in figure 25. The dimensionless thickness of element i is: $$x_{\text{Fi}} = 0.362$$ [multiplied by] 1_{Fi} [multiplied by] [SQRT [rho] $_{\text{Fi}}$ (Equation 5.5) where $1_{\Gamma}i_{\Gamma}$ is the thickness, in feet, of element i and $k_{\Gamma}i_{\Gamma}$ is its thermal conductivity. In order to determine the EHC of a building, calculate $x_{\Gamma}i_{\Gamma}$ for each element and determine the associated values of $EF_{\Gamma}i_{\Gamma}$ from figure 25. Then, multiply each thickness function by the heat capacity scale factor $(s_{\Gamma}i_{\Gamma})$ and the mass area $(A_{\Gamma}i_{\Gamma})$ and sum the results. Then, substitute the summation into equation 5.2. Mass elements not located in direct gain zones should be included in the EHC calculation if the zones are convectively coupled to the solar rooms. However, convectively coupled mass is not as effective as radiatively coupled mass. Therefore, the thickness function for convectively coupled mass elements should be multiplied by 0.4 before summing with the other contributions. FIGURE 26. The DHC thickness function (DF) vs x. FIGURE 26. The DHC thickness function (DF) vs x. It is usually not necessary to account for the heat storage contribution of all surfaces in a direct gain zone. Frequently, the thermal storage effect is dominated by one or two relatively thick layers of high density masonry material. A wooden frame structure on a concrete floor slab, for example, can be accurately modeled by including only the concrete slab in the EHC calculation. For the special case in which one thermal storage element dominates the building reponse, the EHC given by equation 5.2 reduces to: The diurnal heat capacity of a building is given by: N DHC = [SIGMA] $$A_{\Gamma i \gamma}$$ [multiplied by] $s_{\Gamma i \gamma}$ [multiplied by] DF $_{\Gamma i \gamma}$ i=1 (Equation 5.7) where, again, the summation is carried out over the N thermal storage elements in the building. The quantity DF $_{\Gamma^1 1}$ is the DHC thickness function and is plotted as a function of x in figure 26. When the DHC is used to determine the time constant of a particular building or set of rooms comprising a single thermal zone, all massive elements contained in the zone, whether in a solar room or not, should be included in the summation. In applications that involve determination of temperature swings in solar rooms, all elements that are radiatively coupled to the solar source (as in rooms having direct gain apertures or radiant panels) should be included in the summation; contributions from mass elements that are convectively coupled to the solar source are included in the summation only after multiplying their DHC thickness functions by 0.4. If only one radiating coupled mass element is contained in the thermal zone of interest, the DHC given by equation 5.7 reduces to: DHC = $$A_{rm_1}$$ [multiplied by] s [multiplied by] DF (Equation 5.8) 5.1.3 System parameters. Tables of system parameters for a large set of reference designs are presented in Appendix A. The reference designs include direct gain buildings, radiant panels, thermosiphoning air panels, unvented Trombe walls, vented Trombe walls, water walls, concrete block walls, and sunspaces. The system parameters include the scale factor (F), the effective aperture conductance (G), the steady state aperture conductance ($U_{\Gamma}c_{1}$) and the effective aperture absorptance ([alpha]). For those systems with interior mass, DHC/Arc₁ is included and, for direct gain buildings and radiant panels, EHC/Arc₁ is also specified. The user must select the reference design that most closely resembles his own and use the associated parameters from Appendix A in the subsequent design analysis. The characteristics of the reference designs will be discussed by system type in the subsections that follow. However, some of the design characteristics are common to all systems and these common properties are listed in table V. 5.1.3.1 Direct gain buildings. A set of 81 reference direct gain designs are included in Appendix A. The 81 designs were selected by choosing three appropriate values for each of the four principal design variables and #### MIL-HDBK-1003/19 allowing all possible combinations of those variables (Note: $3 \times 3 \times 3 \times 3 = 81$ combinations). The principal design variables and associated values are: $A_{\Gamma}m_{1}/A_{\Gamma}c_{1} = 3$, 6, 9 THICK = 2, 4, 6 (inches) R-value = 0, 4, 9 (deg.F-ft $^{L}2^{J}$ -hr/Btu) NGL = 1, 2, 3 where $A_{\Gamma}m_{\uparrow}/A_{\Gamma}c_{\uparrow}$ is the ratio of the thermal storage mass surface area to the solar collection area, THICK is the thermal storage mass thickness in inches, R-value is the thermal resistance of the solar aperture with night insulation in place, and NGL is the number of glazings in the aperture. The thermal storage mass in the direct gain systems is high density concrete with the following properties: density $[rho] = 150 \text{ lb/ft}^{L3J}$ specific heat c = 0.2 Btu/lb-deg.Fthermal conductivity $k = 1.0 \text{ Btu/deg.F-ft}^{L2J-hr}$ The concrete is assigned a solar absorptance of 0.8 and an infrared emittance of 0.9. Twenty percent of the transmitted and internally reflected solar radiation is assumed to be absorbed on non-massive surfaces and rapidly convected to the room air. Properties of other building materials that can provide thermal storage are listed in table VI. Any of these other materials can be substituted for the concrete in the reference designs. The procedure is to simply select the reference design that has an EHC closest to the design under consideration and the same NGL and R-value. It is not necessary to match the parameters THICK or $A_\Gamma m_{\bar{1}}/A_\Gamma c_{\bar{1}}$. If the contemplated design does not have an EHC close to one of the reference values, linear interpolation may be employed on the values of F and G. If interpolation on the EHC is used to determine F and G, then $U_{\Gamma}c_{\Gamma}$ is read from either of the reference designs involved in the interpolation. (The values of $U_{\Gamma}c_{\Gamma}$ will be identical because both systems involved must have the desired NGL and R-value.) The best estimate of [alpha] is obtained from the reference design having the desired NGL and an $A_{\Gamma}m_{\Gamma}/A_{\Gamma}c_{\Gamma}$ ratio closest to the design under consideration. The effect on performance of decorative coverings placed over mass surfaces is included in the analysis by multiplying the EHC by the factor: [alpha]/(1.31 [multiplied by] $R_{\Gamma}d_{\Gamma} + 0.8$), (Equation 5.9) where $R_{\mathsf{f}}d_{\mathsf{I}}$ is the thermal resistance or R-value of the decorative covering and [alpha] is the solar absorptance of its surface; this factor was derived on the basis of steady state energy balance research reported in the ASHRAE Journal. TABLE V. Reference design characteristics. | Glazing Properties | | |--|--| | Transmission characteristics Orientation Index of refraction Extinction coefficient Thickness of each pane Air gap between panes | diffuse
south
1.526
0.5 in. L -1J
1/8 in.
1/2 in. | | Thermal Control | | | Room temperature Internal heat generation Night Insulation | 65deg.F to 75deg.F
none | | Thermal resistance In place, solar time Solar Radiation Assumptions | R-4 or R-9 5:30 p.m. to 7:30 a.m. | | Shading
Ground diffuse reflectance | none 0.3 | TABLE VI. Properties of building materials (from ASHRAE Handbook and Produ Directory, 1977 Fundamentals). |
 Material
 | Density, [rho] |
 Specific Heat, c
 (Btu/lb-deg.F) | Thermal
conductivity, k
(Btu/deg.F-ft-hr) | [r | |-----------------------|----------------|---|---|----| |
 Magnesite Brick | 158 | 0.22 | 2.20 | 76 | | Marble | 162 | 0.21 | 1.50 | 51 | | Concrete (high | | | | | | density reference) | 150 | 0.20 | 1.00 | 30 | | Plaster | 132 | 0.43 | 0.42 | 23 | | Chrome brick | 200 | 0.17 | 0.67 | 22 | | Fireclay brick | 112 | 0.20 | 0.58 | 13 | | Concrete (stone) | 144 | 0.16 | 0.54 | 12 | | Concrete (lightweight | | | | | | aggregate) | 120 | 0.21 | 0.43 | 10 | | Brick, building | 123 | 0.20 | 0.40 | 9 | | Adobe | | | 0.38 | 6 | | Sand | 95 | 0.19 | 0.19 | 3 | | Gypsum board | 50 | 0.26 | 0.10 | 1 | ^[*]Private communication from J. C. Hedstrom, Los Alamos National Laboratory. Adobe absorbs moisture readily, and properites can vary widely with moisture content. The thermal conductivity is particularly sensitive. If multiple storage elements are present, the appropriate correction factor must be applied to each element individually. R-values for finish materials are included in table III and solar absorptances are available in table VII which, though not specifically directed at finish materials, does indicate the variation of [alpha] with color. For convectively coupled mass elements, set [alpha] equal to 0.8, the reference design value, regardless of surface color. 5.1.3.2 Radiant panels. Three reference designs are available for simple radiant panels. Double glazing is used in all cases. The distance between the inner glazing and the metal absorber plate is 1-inch and the plate has a solar absorptance of 0.95 and
an infrared emittance of 0.9. The thermal storage medium is high density concrete. The concrete thickness is 4 inches and the area ratio may be 3, 6, or 9. System parameters, including the EHC are provided in Appendix A. Systems may be analyzed with other thermal storage materials or configurations by employing the EHC as described in 5.1.3.1. For radiant panels, however, the [alpha] in equation 5.4 is the infrared absorptance ([alpha] rir1) rather than the solar absorptance. Therefore, to correct for the presence of decorative coverings, use the formula: [alpha] $$\operatorname{rir}_{1}/(1.48 \text{ [multiplied by] } \operatorname{R}_{1} + 0.9)$$ (Equation 5.10) The infrared absorptance of most building or finish materials is about 0.9. 5.1.3.3 Thermosiphoning air panels. There are 18 reference designs for TAP systems that include both single and double glazed apertures. The solar absorptance of the metal panel is 0.95 and the infrared emittance is 0.9. The thermal storage medium is high density concrete and all combinations of 2, 4, and 6 inch thicknesses with $A_{\Gamma}m_{\uparrow}/A_{\Gamma}c_{\uparrow}$ ratios of 3, 6, and 9 are available. The flow channel depth is 3.5 inches and, for the backflow systems, the absorber surface is 1 inch behind the inner glazing. The upper and lower vents are 8 feet apart and have a total area equal to 6 percent of the panel area. The R-value of insulation between the back of the flow channel and the room air (RTAP) is R-11. If any other value is desired for RTAP, one has only to calculate the effective aperture conductance and the steady state aperture conductance from the following equations: $$G = 24/[RTAP + K_{\Gamma}b_{\uparrow} + (NGL - 1) + 3.7]$$ (Equation 5.11) $$U_{\Gamma}C_{1} = G/24$$ (Equation 5.12) where $K_{\Gamma}b_{\uparrow}$ is a parameter whose value is one for a backflow system and zero otherwise. The scale factor (F) does not vary with RTAP or $K_{\Gamma}b_{\uparrow}$ but is dependent on NGL. Note that the correlations presented in Appendix A are for frontflow systems with RTAP = 11. For backflow systems, $e_{\Gamma}d_{\uparrow}$ = 0.58 for single glazed systems and $e_{\Gamma}d_{\uparrow}$ = 0.69 for double glazed systems. 5.1.3.4 Trombe walls. The Trombe wall reference designs are split into two subcategories: vented and unvented. For both subcategories, the parameters that are varied among the Trombe wall reference designs are the thermal storage capacity (expressed also in terms of wall thicknesses varying from 6 to 18 inches), the number of glazings (1, 2, or 3), the wall surface (flat black or selective), night insulation (none or R-9), and the masonry TABLE VII. Solar absorptance of various materials.* | Material | Solar Absorptanc | |---|---------------------------| | Flat black paint | 0.95 | | Black lacquer | 0.92 | | Dark gray paint | 0.91 | | Black concrete | 0.91 | | Dark blue lacquer | 0,91 | | Black oil paint | 0.90 | | Stafford blue bricks | 0.89 | | Dark olive drab paint | 0.89 | | Dark brown paint | 0.88 | | Dark blue-gray paint | 0.88 | | Azure blue or dark green lacquer | 0.88 | | Brown concrete | 0.85 | | Medium brown paint | 0.84 | | Medium light brown paint | | | Brown or green lacquer | 0.79 | | Medium rust paint | 0.78 | | Light gray oil paint | 0.75 | | Red oil paint | 0.74 | | Red bricks | 0.70 | | Uncolored concrete | 0.65 | | Moderately light buff bricks | 0.60 | | Medium dull green paint | 0.59 | | Medium orange paint | 0.58 | | Medium yellow paint | 0.58 | | Medium blue paint | 0.51 | | Medium Kelly green paint | 0.51 | | Light green paint | 0.47 | | White semi-gloss paint | 0.30 | | White gloss paint | 0.25 | | Silver paint | 0.25 | | White lacguer *This table is meant to serve as a guide on | 0.21
ly. Variations in | *This table is meant to serve as a guide only. Variations in texture, tone, overcoats, pigments, etc., can vary these values. properties ([rho]ck products of 7.5, 15, or 30, where 30 corresponds to the high density concrete used in the reference designs of other system types). The 21 combinations of these parameters used for both the vented and unvented Trombe wall reference designs are presented in Appendix A. Certain characteristics of the Trombe wall reference designs are fixed. These fixed characteristics are listed in table VIII. TABLE VIII. Trombe wall reference design characteristics. | Optical Properties | | |--|------------------------------| | Solar absorptance of wall surface (black)
 Solar absorptance of selective surface
 Infrared emittance of wall surface
 Infrared emittance of selective surface | 0.95
0.90
0.90
0.10 | | Thermocirculation vents | | |
 Total vent area (percent of wall area)
 Vertical separation of vents (feet) | 6
8 | - 5.1.3.5 Water walls. The parameters varied in the water wall reference designs are the thermal storage capacity or wall thickness (3, 6, 9, 12, 18, or 24 inches), the number of glazings (1, 2, or 3), the optical properties of the wall surface (flat black or selective), and the night insulation (none or R-9). The optical properties for the flat black and selective surface walls are the same as those specified for Trombe walls in table VIII. system parameters for fifteen reference designs are presented in Appendix A. - 5.1.3.6 Concrete block walls. Eight reference designs for unvented thermal storage walls constructed of 8-inch x 8-inch x 16-inch concrete building blocks are provided in Appendix A. The concrete blocks used to develop the correlations weighed about 25 pounds each and had two hollow rectangular cores. The eight reference designs include single and double glazed systems with and without mortar filling in the cores; the systems may employ R-9 night insulation or none. The optical properties of the surface are the same as for a flat black Trombe wall as specified in table VIII. The concrete block wall reference designs include secondary thermal storage mass in the floor. The floor is 4-inch thick high density concrete and has an area three times the size of the glazed block wall. The massive floor was included in the reference designs to more realistically represent typical concrete block building construction. 5.1.3.7 Sunspaces. The principal sunspace glazing is assumed to face due south. Thus, wall locations are referred to by the compass directions: the principal glazing is the south wall, the principal common wall is the north wall, and the end walls are the east and west walls. Two types of sunspaces are defined according to the degree of integration with the rest of the building. One type is the attached sunspace, whose north wall is common with adjoining rooms and 30-feet wide in the east-west direction. The other type is the semi-enclosed sunspace that has three common walls, the north, the east, and the west. The semi-enclosed sunspaces are 24-feet wide (east-west) and 12-feet deep (north-south). The north common wall is 9-feet high in all reference designs. One geometrical shape of the attached sunspace and two of the semi-enclosed sunspace are treated. The attached sunspace has a single plane of glazing on the south wall, tilted up from the horizontal by 50 degrees. The two semi-enclosed geometries are: (1) a single, vertical plane of glazing on the south wall, and (2) a single 50-degree tilted plane of glazing on the south wall. These three geometrical configurations are illustrated in figure 27. The reference designs include two types of common wall between the sunspace and the adjacent building. One is lightweight and insulated, corresponding to a frame wall with a thermal resistance of R-20; and one is uninsulated 12-inch thick high density concrete as used in the direct gain designs. In the lightweight wall configuration, there is a row of water containers in the sunspace for thermal storage. The row extends the full east-west width of the sunspace. The containers are twice as high as they are deep. The water volume is 1 ft $^{L}3^{J}/ft^{L}2^{J}$ of common wall area. The containers are on the sunspace floor immediately adjacent to the common wall and are thermally coupled to the wall and floor by radiation and convection through the sunspace air. Both wall configurations include thermocirculation vents in the common wall whose areas total 6 percent of the north wall area. The vent centers are separated by a height of 8 feet. There is no reverse thermocirculation. For each geometry and wall configuration, movable insulation may or may not be applied at night to the sunspace glazing. When used, the night insulation has a thermal resistance of R-9 and is in place from $5:30~\rm p.m.$ to $7:30~\rm p.m.$ solar time. The end walls of the sunspace are insulated to R-20 and have no glazing. The sunspace floor is a 6-inch thick slab of masonry material with a thermal conductivity of 0.5 Btu/deg.F-ft-hr and a volumetric heat capacity of 30 Btu/ft $^{L}3^{J}$. There is conduction through underlying soil to a fixed temperature deep in the earth and through perimeter insulation to the ambient air. The surfaces of the common wall on the sunspace side have solar absorptance of 0.7 if they are lightweight and 0.8 if they are masonry. The water containers have a solar absorptance of 0.9. The sunspace floor has a solar absorptance of 0.8. The other surfaces (ceiling and end walls) have solar absorptance of 0.3. A sunspace infiltration rate of 0.5 air changes per hour is assumed in all reference designs. Auxiliary heating prevents the sunspace temperature from falling below 45deg.F and ventilation is assumed to limit the maximum sunspace temperature to 95deg.F if possible. FIGURE 27. Sunspace geometries (not to scale). The system parameters F, G, $U_{\Gamma}c_{1}$, and [alpha] are listed in
Appendix A for 16 reference sunspace designs. Minor variations from the geometry, optical properties, and insulation R-values specified in the preceeding paragraphs will not greatly effect system performance. To maintain high performance use plenty of thermal storage mass with a high solar absorptance, light colors on lightweight surfaces, and high R-values on east and west walls and on insulated common walls. The effect of sunspace glazing tilt may be included in the performance analysis process as will be described later. Remember that sunspace analysis is conducted in terms of the projected area of the solar aperture (Arp1) rather than the actual area. 5.1.4 System parameter worksheet. Worksheet 3 is provided to help keep track of the various system parameters that must be calculated or obtained from Appendix A. Note that the worksheet allows for the presence of two passive solar heating systems on a building and provides formulas for calculating the properties of the resulting mixed system. The first step in filling out the worksheet is to calculate the thermal storage characteristics of the building. For direct gain or radiant panel systems, the EHC must be determined. If the thermal storage mass properties and configuration correspond closely to one of the reference designs in Appendix A, simply enter the specified $\text{EHC/A}_{\Gamma}\text{C}_{\Gamma}$ in the indicated blank on the worksheet; the diurnal heat capacity per $\text{ft}^{L}2^{J}$ of aperture, $\text{DHC/A}_{\Gamma}\text{C}_{\Gamma}$, is then found from the same reference design. Otherwise, it will be necessary to calculate the EHC and the DHC as described in 5.1.2 and to evaluate $\text{DHC/A}_{\Gamma}\text{C}_{\Gamma}$ as outlined below. Among the remaining reference designs, only TAPS and concrete block Trombe walls have specified levels of interior mass. For the concrete block Trombe walls, the interior mass provides secondary thermal storage to the wall itself and only one representative level is treated (high density concrete with a thickness of 4 inches and a surface area three times greater than the block wall area). The TAP reference designs have the same interior mass options available for direct gain systems. The DHCs for concrete block walls and TAPs are specified in Appendix A for the reference designs. After entering values of the EHC/A_TC_{\(\)} and DHC/A_TC_{\(\)} on Worksheet 3, proceed to the first (or only) set of system parameters. Enter the system type and number (from Appendix A). If interpolation on the EHC has been employed, enter the numbers of both systems involved. Then enter the first set of system parameters on the worksheet. Finally, enter the size of the first solar collection aperture (using projected area for sunspaces). If two types of passive solar systems are present on the building, proceed to the next part of the worksheet and enter a second set of parameters. Next, calculate the area fractions of the two systems and use the formulas provided on the worksheet to calculate the parameters for the mixture. 5.1.5 Effective thermostat setpoint. Auxiliary heat consumption can often be reduced significantly by setting back the thermostat at night. In order to include this strategy in our design analysis calculations, it is necessary to determine the effective thermostat setpoint, $T_{\Gamma^{e_1}}$, for use in the base temperature calculation. The first step is to calculate the average thermostat setting from the following equation: $$T_{rave_{1}} = T_{r} (hr_{r} 1_{1}/P) + T_{r} 2_{1} (hr_{r} 2_{1}/P)$$ (Equation 5.13) where $T_{\Gamma}1_{\overline{1}}$ and $hr_{\Gamma}1_{\overline{1}}$ are the temperature and duration (in hours) of the first setting, $T_{\Gamma}2_{\overline{1}}$ and $hr_{\Gamma}2_{\overline{1}}$ are the temperature and duration of the second setting, and P is the period of the diurnal cycle (24 hours). Next, determine the building time constant given by: [tau] = 24 [multiplied by] DHC/(NLC + 24 [multiplied by] $U_{\Gamma}C_{\gamma}$ [multiplied by] $A_{\Gamma}C_{\gamma}$) (Equation 5.14) All parameters in this equation are available from the first three worksheets. Finally, the effective thermostat setpoint is obtained from the relation: $$T_{fe_{1}} = T_{f}_{1} - e^{L} - 0.1[tau]/P^{J} (T_{f}_{1} - T_{f}_{a}ve_{1})$$ (Equation 5.15) Use $T_{\Gamma^{e_{1}}}$ in place of $T_{\Gamma^{set_{1}}}$ whenever a night time setback strategy is employed. - 5.1.6 Base temperature worksheet. Worksheet 4 is provided to help the user determine the base temperature for either a constant thermostat setting or for a night time setback strategy as outlined in the preceeding section. All of the equations needed are provided on the worksheet. Remember that $Q_{\Gamma}int_{\Gamma}$ is the internal heat generation rate in Btu/day by people, lights, and appliances. Unless other information is available, use $Q_{\Gamma}int_{\Gamma} = 20,000$ Btu/day per occupant. - 5.1.7 Weather parameters. Having recorded the NLC on Worksheet 2, the system parameters (F, G, $U_{\Gamma}c_{1}$, and [alpha]) on Worksheet 3, and the base temperature on Worksheet 4, evaluate the weather parameters that are needed for design analysis of passive solar heating systems. The required parameters are the transmitted radiation to degree day ratio (VTn/DD) and the city parameter (a). These quantities are tabulated for 210 cities in the continental United States in Appendix B. Provision is made for obtaining parameter values for single, double, or triple glazed systems operating at base temperatures ranging from 30deg.F to 80deg.F. The solar aperture may depart from true south by 60 degrees to the east or west and may be tilted 60 degrees from the vertical. Use of the tables in Appendix B is discussed in the following subsections. - 5.1.7.1 Transmitted radiation to degree day ratio. First, locate the city of interest in Appendix B. The locations are alphabetized, first by state and second by city within each state. Next, locate the column with the appropriate value of the base temperature $T_{\Gamma}b_{T}$. Base temperatures ranging from $30\deg.F$ to $80\deg.F$ are provided; interpolation may be required. Having located the correct column, read and record the value from the row labeled VT1/DD, VT2/DD, or VT3/DD, depending on whether the system of interest is single, double, or tripled glazed. (Note: The minimum monthly value of VTn/DD is tabulated in these columns and the reference month (m) is indicated in parentheses.) If the symbol NA (not applicable) appears, it is an indication that, for the specified base temperature, solar heating is not required. - 5.1.7.2 City parameter. The city parameter (a) is obtained from the same column in which VTn/DD was found; again, interpolation may be required. The number is read from the row marked "PARAMETER A" under the reading "SOUTH-VERT". The adjustment required for off-south or tilted apertures is discussed next. 5.1.7.3 Off-south or tilted apertures. If the orientation of the solar aperture is not due south and vertical, the weather parameters must be corrected according to the following equations: ``` a = a_{\Gamma O_{1}}[1 + Al([theta]/100) + A2([theta]/100)^{L_{2}J} + A3([theta]/100)^{L_{2}J}([psi]/100) + A4([psi]/100) + A5([psi]/100)^{L_{2}J}], (Equation 5.16) VTn/DD = (VTn/DD)_{\Gamma O_{1}}[1 + B1([theta]/100) + B2([theta]/100)^{L_{2}J} + B3([theta]/100)^{L_{2}J}([psi]/100) + B4([psi]/100) + B5([psi]100)^{L_{2}J}], (Equation 5.17) ``` where a $_{\Gamma O_{1}}$ and $_{\Gamma O_{1}}$ are the south-vertical values. The coefficients, A1 through A5 and B1 through B5, are obtained from labeled rows in the weather tables in the column having the desired base temperature. Interpolation between two base temperatures may be necessary. The angle [theta] is the azimuth of a normal to the aperture with due south taken as zero and east as positive. The angle [psi] is the tilt of the aperture relative to a vertical position, i.e., [psi] is zero for a vertical aperture. Equations 5.11 and 5.12 are applicable to azimuths of up to +/-60 degrees and tilts of up to 60 degrees. 5.1.8 Weather parameter worksheet. Worksheet 5 is provided to guide the user through the process of obtaining and recording weather data needed for design analysis. The first part of the worksheet calls for data about the building location and the annual heating degree days. The next two parts are parallel and provided a step by step procedure for calculating the weather parameters needed for each of two separate passive solar heating systems that may serve the building. If only one system is present, make only one set of entries on the worksheet. Also, if two systems that have the same number of glazings, the same orientation, and the same tilt are present, only one set of entries on the worksheet is required. Finally, the last part of the worksheet provides equations for calculating the mixed system weather parameters in the event two non-similar systems are present. Record the results of these calculations in the indicated blanks. - 5.1.9 Auxiliary heat consumption worksheet. Determination of the auxiliary heat requirements is outlined on Worksheet 6. First, the scaled solar load ratio of the system is calculated on the basis of parameters previously recorded on Worksheets 2, 3, 4, and 5. The annual heat to load ratio is read off the nomograph in figure 23 using the calculated value of the scaled solar load ratio and the city parameter recorded on Worksheet 5. Finally, the auxiliary heat required annually is obtained by multiplying the heat to load ratio by the annual building load. Worksheet 6 guides the user through the calculation and provides a written record of performance analysis results. - 5.2 Design refinement. The discussion presented in the following subsections advises the user on how to modify the design just analyzed on the worksheets if the results obtained were not satisfactory. 5.2.1 System economics. The ratio of
annual energy saved to capital invested (E/C), in MMBtu/K\$, is a useful economic parameter. The annual energy saved is given by: $$E = Q_{\Gamma}N_{7} - Q_{\Gamma}A_{7}$$ (Equation 5.18) where $Q_{\Gamma}A_{\overline{1}}$ is the annual auxiliary heat requirement from Worksheet 6 and $Q_{\Gamma}N_{\overline{1}}$ is the net annual load. The formula for net annual load is: $$Q_{\Gamma}N_{\gamma} = NLC \text{ [multiplied by] } DD_{\Gamma}a_{\gamma}$$, (Equation 5.19) where NLC is the net load coefficient from Worksheet 2 and DD $_{\Gamma a \gamma}$ is the annual heating degree days from Worksheet 5. Note that aperture losses are not included in equation 5.19 so that the passive heating system is not inappropriately credited with saving energy by meeting its own load. The capital invested (C) is the total cost of the passive solar heating system. The heating system cost depends on the design and on location dependent costs for materials and construction. This parameter must be estimated by the user. Clearly, the E/C ratio can be increased by reducing the auxiliary heat requirement and/or the system cost. Guidance for improving solar heating performance is provided in the following section on system efficiency. #### 5.2.2 System efficiencies. 5.2.2.1 System efficiency worksheet for reference month. Worksheet 7 is provided for calculation of the system efficiencies during the reference month (m) noted beneath the base temperature in the weather tables. The reference month is the harshest month in the heating season, for a particular base temperature, in that the associated value of VTn/DD is a minimum. In the first part of the worksheet, equations and blanks are provided for calculating and recording the values of the effective total load coefficient (TLC $_{\Gamma}e_{1}$) and the solar heating fraction (SHF). These two quantities are then substituted into the equation for $e_{\Gamma}t_{1}$ that follows. The second part of the worksheet merely provides a blank for recording the value of the delivery efficiency ($e_\Gamma d_T$) that is tabulated for all systems in Appendix B. In the final part of the worksheet, the utilization efficiency (e $_{\Gamma}u_{1}$) is calculated from the indicated formula. 5.2.2.2 Improving total system efficiency. It is convenient to think in terms of improving the total system efficiency by increasing the magnitude of its factors, $e_{\Gamma}d_{\Gamma}$ and $e_{\Gamma}u_{\Gamma}$. The delivery efficiency is defined as the fraction of the solar heat absorbed by the system that is actually delivered to the living space. For direct gain systems, this quantity is always unity because the living space is the absorber. For other systems, $e_{\Gamma}d_{\Gamma}$ is always less than 1 and can be increased by adding additional layers of glazing or employing a selective surface. Both of these strategies decrease heat losses from the absorber surface to ambient conditions. The delivery efficiency could also be increased by decreasing the thickness of thermal storage walls. This strategy, however, is not advisable because it can result in an offsetting decrease in $e_{\Gamma}u_{\Gamma}$. The utilization efficiency is the fraction of the heat delivered to the building interior that is used to meet the building heat load. The un-utilized heat must be ventilated to avoid overheating the living space. The utilization efficiency therefore provides a useful measure of thermal comfort and convenience. Systems having values of $e_\Gamma u_\Gamma$ below 0.6 should be avoided and values of 0.7 and above are advisable. The principal strategy for increasing $e_\Gamma u_\Gamma$ is to add more thermal storage mass. Thus, thermal storage wall thickness may be increased and additional mass layers may be added to direct gain or radiant panel buildings. In fact, the addition of interior mass can be used to improve the utilization efficiency of any passive heating system although the effect can presently be quantified only for direct gain or radiant panel buildings. A low utilization efficiency can also indicate that the solar aperture is too large. If the annual heat to load ratio is fairly small, for example 0.2 or less, and the utilization efficiency is below 0.6, the aperture size should be reduced. An excessively large aperture may yield good performance in terms of energy savings, as indicated by low values of $(Q_{\Gamma}A_{T}/Q_{\Gamma}L_{T})_{\Gamma}a_{T}$, but may be uncomfortable and inconvenient as indicated by low values of $e_{\Gamma}u_{T}$. 5.2.3 Worksheet for average maximum temperature during reference month. A step by step procedure for estimating the average maximum room temperature (assuming no heat is ventilated) during the reference month is presented in Worksheet 8. The first step is to calculate $Q_{\Gamma}D_{\Gamma}$, the solar energy delivered to the living space. As specified on the worksheet, $Q_{\Gamma}D_{\Gamma}$ is the product of [alpha] and $A_{\Gamma}C_{\Gamma}$ (Worksheet 3), $e_{\Gamma}d_{\Gamma}$ (Worksheet 7), $VT_{\Gamma}n_{\Gamma}/DD$ (Worksheet 5), and DD, the heating degree days for the reference month. Values of DD are tabulated in Appendix B for a series of base temperatures in each included city. The second step is to calculate the excess solar energy during the reference month. The amount of solar energy utilized is given by the product of $e_{\Gamma}u_{1}$ and $Q_{\Gamma}D_{1}$, so the excess heat $(Q_{\Gamma}E_{1})$ is given by the product of $(1 - e_{\Gamma}u_{1})$ and $Q_{\Gamma}D_{1}$ as indicated on the worksheet. Next, the average room temperature (T) that would prevail in the living space, if excess solar heat were ventilated, is calculated from the empirical equation given on Worksheet 8; the solar heating fraction (SHF) is available on Worksheet 7. The temperature increment without ventilation ([W-DELTA]T_ Γ I_1) is then calculated by dividing the excess solar energy by the number of days in the reference month and the DHC of the building. The average maximum temperature in the living space without ventilation (T_{\Gamma}max_1) is then obtained by summing T and [W-DELTA]T_{\Gamma}I_1. High values of $\text{T}_{\Gamma}\text{max}_{\bar{1}}$ indicate that the building is a poor design and may overheat badly causing discomfort to the occupants. Inspection of the equations on Worksheet 8 indicates that Trmax may be reduced by: - a. Reducing the solar collection area $(A_{\Gamma}c_{1})$. - b. Increasing the utilization efficiency ($e_{\Gamma}u_{\overline{1}}$). - c. Increasing the diurnal heat capacity (DHC). - 5.2.4 Annual incremental cooling load. The annual incremental cooling load ($Q_{\Gamma}I_{1}$) associated with a passive solar heating system is defined here as that part of the solar energy delivered to the living space that must be removed from the building to avoid exceeding a specified maximum temperature thereby maintaining a comfortable environment. This definition includes excess heat delivered to the building during the winter months and does not account for the beneficial potential of ventilation. Furthermore, the calculation procedure presented in this section does not include the effect of such defensive countermeasures as overhangs, drapes, shades, or covers. Therefore, the incremental cooling load should be considered to be a worst case indicator that emphasizes the need to employ ventilation and shading on passive solar buildings. Also, $Q_{\Gamma}I_{1}$ provides a basis for comparing passive solar designs in terms of their tendency to aggravate the cooling load. - 5.2.4.1 Delivered solar energy worksheet. Worksheet 9 presents the steps required to calculate $(Q_{\Gamma}D_{\overline{1}})_{\Gamma}a_{\overline{1}}$, the total solar heat delivered to the living space during a one year period. This quantity is needed in connection with the incremental cooling load calculation. The first step is to read the total annual transmitted solar radiation, OTAn, from the row marked DUE SOUTH AND VERTICAL. The number n in QTAn indicates whether the system is single, double, or triple glazed. Next, read coefficients, C1 through C5, from the following row marked AZIMUTH AND TILT COEF. The transmitted radiation, corrected for azimuth and tilt, can then be calculated from the following formula: ``` QTAn = (QTAn)_{\Gamma 0}[1 + C1([theta]/100) + C2([theta]/100)^{L}2^{J} + C3([theta]/100)^{L}2^{J}([psi]/100) + C4([psi]/100) + C5([psi]/100)^{L}2^{J}] (Equation 5.20) ``` This quantity should be entered in the worksheet in the blank labeled (QTAn). Note that mixtures of two systems are allowed and that the mixing algorithm for $(Q_{\Gamma}D_{\overline{1}})_{\Gamma}a_{\overline{1}}$ is provided on the worksheet. 5.2.4.2 Incremental cooling load worksheet. The incremental cooling load may be determined by following the procedure set forth on Worksheet 10. The first step is to calculate the annual heat to load ratio using a thermostat setting that is 10deg.F below the maximum temperature to be tolerated in the living space. If this setting is the same as the one previously employed in the heating analysis, no new calculations are required. Otherwise, Worksheets 4, 5, and 6 must be re-done to determine the new value of $(Q_{\Gamma}A_{\Gamma}/Q_{\Gamma}L_{\Gamma})_{\Gamma}a_{\Gamma}$. Having determined the heat to load ratio, $Q_{\Gamma}A_{\Gamma}$ is found as indicated on Worksheet 6, and the annual solar heating fraction, SHF $_{\Gamma}a_{\Gamma}$, is calculated from the equation given on Worksheet 10. Then, the annual utilization efficiency, $(e_{\Gamma}u_{\Gamma})_{\Gamma}a_{\Gamma}$, can be calculated using the indicated equation. Next, calculate $T_{\text{ract}_{1}}$, the actual indoor temperature (the annual average) from the equation provided on the worksheet. Use the previously determined value for $(e_{\text{ru}_{1}})_{\text{ra}_{1}}$. Then, using $T_{\text{ract}_{1}}$ in place of $T_{\text{rset}_{1}}$, obtain a new base temperature from
Worksheet 4. Enter the weather tables in the column indicated by the new base temperature and read the actual heating degree days, DD_{ract_{1}}, from the row marked MONTHLY DD. Enter this quantity on the worksheet. Finally, calculate $Q_{\Gamma}act_{1}$, the actual annual heating load, from the equation provided on Worksheet 10, and then evaluate $Q_{\Gamma}I_{1}$ by subtracting $Q_{\Gamma}act_{1}$ from the sum of $Q_{\Gamma}D_{1}$ and $Q_{\Gamma}A_{1}$. Thus, the incremental cooling load is the difference between the amount of heat put into the building (solar plus auxiliary) and the amount actually lost to the outside. - 5.2.4.3 Reducing the incremental cooling load. The incremental cooling load can be reduced by employing systems with higher utilization efficiencies, smaller apertures, or more thermal storage mass. During the heating season and early and late in the cooling season, ventilation can be employed to remove most of the excess heat. Overhangs can reduce delivery of unwanted solar heat to the living space as can drapes and shades in direct gain buildings. However, external shutters or covers are by far the most effective means of reducing or even eliminating the incremental cooling load. - 5.3 Example calculations for a four-plex family housing unit. - 5.3.1 Description of the building. In this section an example is presented that illustrates use of the schematic design guidelines in 4.3 and the design analysis procedures in 5.1 and 5.2. To illustrate the special problems associated with multizone design, a four-plex family housing unit was selected for consideration. A sketch of the four-plex unit to be solarized is presented in figure 28. The long dimension of the structure is oriented 15 degrees east of true south, the departure presumably resulting from some constraint at the building site. Each individual two story family section has a length of 37 feet and a depth of 23 feet. The heated floorspace of each section is therefore about 1700 ft $^{L}2^{J}$ and the total floorspace of the building is 6800 ft $^{L}2^{J}$. In the following sections this family housing unit will be solarized as a direct gain system located in Norfolk, Virginia. 5.3.2 Schematic design parameters. Begin by filling out Worksheet 1 as illustrated in the example. Using the dimensions given in figure 28 and the formulas on the worksheet, it is an easy matter to obtain the "Building Size Parameters" and determine that the external surface area to floor area ratio is 2.91. Note that the total heated floorspace of the four-plex unit is being used in the analysis; this approach will yield the total solar aperture size and auxiliary heat requirement for the building. (An approximate procedure for partitioning the aperture area between inner and outer sections of the unit will be discussed later, as will section by section analysis.) FIGURE 28. Four-plex family housing unit. Next, select a reference value for wall insulation, RWALL $_{\Gamma O 1}$, from the contour map in figure 13. As Norfolk is slightly below the middle of the harsh climate range on the east coast, an R-value just below the middle of the recommended range is selected, that is, RWALL $_{\Gamma O 1}$ = 22. After correcting for building size, RWALL becomes 21. Values for roof and perimeter insulation are easily obtained from the scaling formulas indicated on the worksheet. The aperture size ratio (expressed in percent of floorspace) for a reference 1500 $\rm ft^{L}2^{J}$ building is read from the contour map in figure 15. Selecting the maximum value for the region encompassing Norfolk, we obtain: $$(A_{\Gamma}c_{7}/A_{\Gamma}f_{7})_{\Gamma}o_{7} = 0.12$$, where the fractional value is indicated rather than the percentage value. This ratio is then scaled for building size (using the formula on the worksheet) to obtain a total solar collection area of: $$A_{\Gamma}C_{7} = 791 \text{ ft}^{L}2^{J}$$. Enter this number on the worksheet and finally, enter the azimuth of 15 degrees at the bottom. 5.3.3 Net load coefficient. A copy of Worksheet 2 is provided for the example calculation. The total external perimeter includes both floors and totals 684 feet. The ground floor area and perimeter are 3,400 ft $^{L}2^{J}$ and 342 feet, respectively. The roof area (horizontal projection) is the same as the ground floor area and the south wall area, including windows, is 2,664 ft $^{L}2^{J}$. A value of 0.05 is selected for the non-south window fraction and the windows are assumed to be double glazed. The infiltration rate is assumed to be 0.6 air changes per hour and the air density ratio is set at 1.0, the sea level value. In the next part of the worksheet, the non-south window area and the wall area are calculated using the indicated equations and previously determined parameters. Finally, in the last part of the worksheet, the various components of the net load coefficient are calculated and summed to obtain the value of NLC = 28,248. 5.3.4 System parameters. The next task is to record the system parameters on Worksheet 3 which is provided for this example. First, record the system type, direct gain, and then proceed to determine whether or not the thermal storage mass corresponds to a reference design. If the thermal mass does not correspond closely to a reference design it will be necessary to perform detailed calculations to determine EHC/Arc1 and DHC/Arc1. Assume that the only significant high mass elements in the building are the 4-inch thick high density concrete floor slabs, and that heat is stored in these slabs through their upper surfaces. The total surface area available for storage is therefore 6,800 ft^L2^J. However, mass that is not located in rooms containing direct gain apertures is only 40 percent as effective as that in direct gain rooms; this reduced effectiveness occurs because remote mass is convectively coupled to the solar heat source rather than radiatively coupled. If we assume that only 50 percent of the floor slab area is located in direct gain rooms, then the surface area available for storage is: $0.5 \times 6,800 + 0.4 \times (0.5) \times 6,800 = 4,760 \text{ ft}^{L2J}$. Dividing this number by $A_{\Gamma}c_{7} = 791$ ft $^{L}2^{J}$ from Worksheet 1 yields a mass to collector area ratio of: $A_{rm_1}/A_{rc_1} = 6.02$. If the concrete slabs are covered with dark brown ([alpha] = 0.88 from table VII) linoleum tile ($R_{\Gamma}d_{\Gamma}=0.05$ from table III) the floor covering correction factor has a value of 1.01 (see equation 5.9). This correction factor is close to 1 because the thermal resistance of the tile is offset by the enhanced solar absorptance. The effective area ratio of the thermal storage mass therefore remains very nearly equal to 6, which is a reference design value. Employing the four digit numbering system used for direct gain buildings in Appendix A, the first digit, which corresponds to the $A_{\Gamma}m_{\Gamma}/A_{\Gamma}c_{\Gamma}$ ratio, is taken as 6. The floor slab thickness has already been specified as 4 inches (of high density concrete), so the second digit in the system is 4. Finally, selecting a night-insulated system with an R-value of 4deg.F-ft $^{L}2^{J}$ -hr/Btu and two glazing layers, we obtain a system number of 6442 and record that number on the worksheet. Since the four-plex unit corresponds closely to this reference design, we are able to obtain an EHC/A $_{\Gamma}c_{\Gamma}$ of 53.93 Btu/deg.F-ft $^{L}2^{J}$ and a DHC/A $_{\Gamma}c_{\Gamma}$ of 56.76 directly from Appendix A. These numbers also are recorded on Worksheet 3. Finally, the worksheet is completed by locating and recording the values of F, G, U $_{\Gamma}c_{\Gamma}$, and alpha specified for direct gain system number 6442 in Appendix A. The aperture size, 791 ft $^{L}2^{J}$, is also recorded to facilitate analysis of mixed systems. In some instances a building might employ two different system types; Worksheet 3 allows for this possibility. To analyze a mixed system, repeat the above procedure for the second system and enter the component areas in the indicated blanks. The mixed system parameters are then calculated using the weighting procedure indicated on the worksheet. 5.3.5 Base temperature. Worksheet 4 for the base temperature is divided into two parts. The first part is used to calculate the base temperature when a constant thermostat setting is employed during the heating season. The second part is used to calculate the base temperature when a night time setback is employed in the building. For this example we shall adopt a setback strategy. The daytime setting shall be 70deg.F and is assumed to be in effect from 5 a.m. to 10 p.m. for a duration of 17 hours. The night time setpoint shall be 60deg.F and has a duration of 7 hours. After entering these values on the worksheet, the indicated formulas are used to calculate the average setpoint of: $T_{rave_1} = 67.1 deg.F$. #### MIL-HDBK-1003/19 This number is entered on the worksheet and the time constant is calculated next. Based on previously recorded values for DHC, NLC, $U_{\Gamma}c_{1}$, and $A_{\Gamma}c_{1}$, the time constant is: $$[tau] = 30.9 hr$$. Using this number in the following equation on the worksheet we obtain an effective thermostat setpoint of: $$T_{\Gamma}e_{1} = 67.5 \text{deg.F}$$. Finally, the base temperature is calculated from the last equation on the worksheet. The internal heat generation rate $(Q_{\Gamma}int_{1})$ is taken to be the product of 20,000 Btu per person per day (a typical value) and 14, the probable number of occupants of a quadruplex (assuming an average family size of 3.5 persons). Using these assumptions, we obtain a base temperature of: $$T_{\Gamma}b_{7} = 59.5 = 60 \text{deg.F}$$, and enter it on the worksheet. 5.3.6 Weather parameters. We begin filling out Worksheet 5, as indicated in the example, by entering the state and city in which the building is located. Then we turn to the weather tables presented in Appendix B and
locate the column for a base temperature of 60deg.F and record the ANNUAL DD given in that column on the worksheet. Next, record the parameters that characterize the direct gain system. The number of glazings is two, the azimuth is 15 degrees, and the tilt is zero. The value of the south/vertical transmitted radiation to degree day ratio is obtained from the column marked TB60 (indicating a base temperature of 60deg.F) and the row labeled VT2/DD (indicating a double glazed system). The value found in the weather tables is: $$(VT2/DD)_{CO_1} = 27.60$$. The subscript o indicates a south/vertical orientation. Similarly, from the same column and the row marked PARAMETER A, we obtain: $$a_{\Gamma}o_{7} = 0.637$$, for a south/vertical orientation. To correct for the azimuth of 15 degrees east, one simply records the value of A1 through A5 and B1 through B5 from the TB60 column and uses the referenced equations to obtain: $$VT2/DD = 27.51$$, and: $$a = 0.616$$, where the subscript i has been dropped because only a single system is present. As a general rule, the corrections for azimuth do not become significant until the departure from due south approaches $\pm 1/30$ degrees. If two systems having either different numbers of glazings or different orientations are employed it will be necessary to determine the weather parameters for the second system using the blanks provided. Then the weather parameters for the two systems are area weighted using the formula provided on the worksheet. - 5.3.7 Auxiliary heat requirements. The auxiliary heat requirements of the building are calculated using Worksheet 6 which is reproduced for the example calculation. The scaled solar load ratio (SLR*) is computed from parameters previously recorded on other worksheets and found to be 0.64. Using this value and the city parameter (a) from Worksheet 5, the annual heat to load ratio is read from the nomograph in figure 23 as 0.37. Finally, using the formula at the bottom of the worksheet, calculate an annual auxiliary heat requirement of 32.6 MMBtu for the four-plex unit. Dividing this figure by the floor space of 6800 ft $^{L}2^{J}$ and the annual heating degree days of 2778 yields an auxiliary heating factor of 1.73 Btu/ft $^{L}2^{J}$ -DD. - 5.3.8 Distribution of the solar aperture. In general, the total solar aperture of a multi-family unit should be distributed in a manner that provides greater solar gains to the sections of the unit that experience the greater loads. We can accomplish this by performing the calculations presented herein once for each unique thermal zone within a unit. The worksheets are set up to allow this procedure by entering appropriate values for the heated floorspace and using the specialized definition of total perimeter ($P_{\Gamma}t_{1}$) that excludes partitions between distinct thermal zones. However, in many cases the much simpler procedure described below is adequate. On Worksheet 2 we determined that the four-plex unit has a total NLC of 28,248 Btu/DD. Each of the four sections, therefore has, on the average, a NLC of 7,062 Btu/DD, or one fourth of the total value. The average NLC value must be adjusted to account for the different loss characteristics of the two unique thermal zones that exist in the four-plex units. The two outer sections will have a larger loss coefficient than the two interior sections which have two shared or common side walls. It is assumed that a negligible amount of heat is transferred through these common walls because only small temperature differences are likely to exist from one side to the other. The exterior side walls on the end sections, however, lose heat to ambient conditions that may be quite cold. We can easily calculate the loss characteristics of the end walls using the equations on Worksheet 2. The end wall area i:s $$A_{\Gamma}W_{\Gamma} = 18 \times 23 = 414 \text{ ft}^{L}2^{J}$$ Note that we have assumed that there are no windows on the end walls. The load coefficient of the wall is therefore: $$LC_{\Gamma}W_{\Gamma} = 24 A_{\Gamma}W_{\Gamma}/RWALL = 24 x 414/21 = 473 Btu/DD$$ #### MIL-HDBK-1003/19 Having obtained the end wall loss coefficient, the net load coefficient for an interior zone (NLC ria) is given by: $$NLC_{\Gamma}i_{7} = (NLC - 2 L_{\Gamma}w_{7})/NZONE$$, (Equation 5.21) where NZONE is the number of zones, four in this case, for a row type building. The net load coefficient of an exterior zone (NLC req) is then given by: $$NLC_{\Gamma} = NLC_{\Gamma} + L_{\Gamma} + L_{\Gamma}$$ (Equation 5.22) Carrying out the computation yields: $NLC_{\Gamma}i_{1} = 6.825 Btu/DD$, $NLC_{\Gamma}e_{7} = 7,299 \text{ Btu/DD}$. Equating the LCRs of interior and exterior sections to the original LCR of the complete unit yields the following simple equations for determining $A_{\Gamma}ci_{7}$ and $A_{\Gamma}ce_{7}$, the solar collection areas for the two sections: $$A_{\Gamma}ci_{\Gamma} = A_{\Gamma}c_{\Gamma}(NLC_{\Gamma}i_{\Gamma}/NLC)$$, (Equation 5.23) $$A_{Ce_{7}} = A_{Ce_{7}} (NLC_{e_{7}}/NLC)$$ (Equation 5.24) Evaluation of these equations for the four-plex unit yields: $A_{\Gamma}ci_{1} = 191 \text{ ft}^{L}2^{J}$, $A_{\Gamma}ce_{1} = 204 \text{ ft}^{L}2^{J}$. Note that the aperture sizes differ by only 7 percent and the sizing could be performed with reasonable accuracy (for this example) by simply distributing the total aperture area uniformly among the sections. In that case: $$A_{\Gamma}ci_{1} = A_{\Gamma}ce_{1} = 198 \text{ ft}^{L}2^{J}$$, is the aperture size for interior and exterior sections. 5.3.9 System efficiencies. System efficiencies for the reference month are evaluated using Worksheet 7 in the example. The total effective load coefficient and the solar heating fraction are evaluated using parameters available on other worksheets, and recorded. Then the total efficiency is calculated from the equation provided on Worksheet 7. The result is: $$e_{\Gamma}t_{1} = 0.86$$. Since the delivery efficiency of all direct gain systems is unity, the utilization efficiency has the same value as $e_{\Gamma}t_{1}$, or: $$e_{\Gamma}u_{7} = 0.86$$. #### MIL-HDBK-1003/19 This result indicates that 14 percent of the solar energy absorbed in the building during the harshest winter month (February for Norfolk at a base temperature of 60deg.F) must be ventilated to avoid driving the room air temperature more than 10deg.F above the thermostat setpoint. 5.3.10 Average maximum temperature. The average daily maximum temperature during the reference month is determined by the equations provided on Worksheet 8 which is reproduced in the examples. The first equation gives the solar energy delivered to the living space during February which is the reference month. All quantities in the equation are available from previous worksheets except the monthly degree days (DD) which is obtained from Appendix B. Next, the excess solar energy is determined by taking the product of $Q_{\Gamma}D_{\Gamma}$ and the compliment of the utilization efficiency. The excess solar energy is 1.69 MMBtu. The average temperature in the living space, assuming the excess solar energy is ventilated, is T which is found to have a value of 70.7 for this example. When a night time setback is employed, the effective thermostat setpoint $(T_{\Gamma}e_{1})$ is used for $T_{\Gamma}set_{1}$ in the equation for T. Finally, the temperature increment without ventilation $([W-DELTA]T_{\Gamma}I_{1})$ is computed to be 1.3deg.F which is added to T to obtain an average daily maximum temperature of 72deg.F, which is well within the comfort range. 5.3.11 Incremental cooling load. The incremental cooling load is determined by filling out Worksheets 9 and 10 which are reproduced in the examples. First read the TOTAL ANNUAL TRANSMITTED RADIATION from the row marked DUE SOUTH AND VERTICAL in the weather table for Norfolk. Since the system is double glazed, select the quantity: $$(QTA2)_{CO_1} = 232,584 \text{ Btu/ft}^{L_2J}$$. Then read and record C1 through C5 from the row marked AZIMUTH AND TILT COEF. and record them on the worksheet. Finally, using equation 5.15 as indicated, calculate the transmitted solar radiation corrected for azimuth and tilt. The result is: $$QTA2 = 231,210 \text{ Btu/ft}^{L}2^{J}$$ The last equation on the worksheet yields: $$Q_{\Gamma}D_{1} = 177.4 \times 10^{L}6^{J} \text{ Btu}$$, for the delivered solar energy. We begin filling out Worksheet 10 by selecting a maximum temperature of $80 \mathrm{deg.F.}$ In this case $T_{\Gamma} \mathrm{set}_{\Gamma}$ is $70 \mathrm{deg.F}$ which is the same value used for the auxiliary heat consumption analysis. Therefore, we may use the annual heat to load ratio and the auxiliary heat requirement that were previously recorded on Worksheet 6. Enter these numbers and calculate the annual solar heating fraction using the indicated equation. Then calculate the actual indoor temperature from the equation provided on Worksheet 10. The result is: $$T_{\Gamma}act_{1} = 75.8 deg.F$$ Next, the actual annual heating degree days is determined from Worksheet 4 by employing $T_{\Gamma}act_{\Gamma}$ in place of the daytime thermostat setpoint to obtain the base temperature: $$T_{\Gamma}b_{1} = 65.8 \text{deg.F}$$. Referring to the weather table for Norfolk and interpolating between base temperatures of 65deg.F and 70deg.F, we obtain: $$DD_{\Gamma}act_{1} = 3,827$$. Now the actual annual heat load is calculated from the equation provided on Worksheet 9. The result is: $$Q_{ract_{1}} = 133.5 \times 10^{L6J} \text{ Btu}$$. Then the incremental cooling load is calculated from the final equation on the worksheet and found to be: $$Q_{\Gamma}I_{7} = 76.5 \times 10^{L6}J$$ Btu . This is quite a large number and points out the necessity for shading the solar aperture during the cooling season. Since our system has movable insulation, the means for providing the required shading is already in place. 5.3.12 Refining the design. The first refinement one might
consider to the four-plex family housing unit would be to increase the building mass. This could moss easily be accomplished by employing massive partitioning walls between the individual sections. The addition of more mass would increase the DHC and EHC of the unit and lead to a higher utilization efficiency thereby reducing the auxiliary heat requirements. Additionally, the increase in utilization efficiency might lead one to consider reducing the size of the solar apertures. This strategy could reduce the incremental cooling load thereby improving building comfort and convenience. Alternately, covers or shading devices could be employed to reduce Q_TD_T during the cooling season. The quantitative effect of any design refinements on building performance can be determined by entering the change on the appropriate worksheet and working forward from that point. ## 6. NOTES 6.1 Intended use. In this handbook, the basic concepts of passive solar design have been outlined and the general climatic considerations that relate to its applicability in various regions of the continental United States have been discussed. Even in those regions where solar availability is low, building performance can always be improved by cost free measures such as proper building orientation and window distribution. The use of passive solar design can significantly reduce energy consumed for space heating both in existing buildings that may be retrofit and in new construction. Guidelines for schematic design have been presented that should also prove useful for initial screening of building designs submitted in response to a turn key procurement action. More detailed design analysis procedures were provided for use in the design process or for final evaluation of candidate designs. Design refinement was discussed in terms of the efficiencies of a passive solar system, and finally example calculations were presented for a four-plex family housing unit to illustrate use of the procedures. - 6.2 Data requirements. When this handbook is used in an acquisition and data are required to be delivered, the data requirements shall be developed as specified by an approved Data Item Description (DD Form 1664) and delivered in accordance with the approved Contract Data Requirements List (CDRL), incorporated into the contract. When the provisions of DOD FAR Supplement, Part 27, Sub-Part 27.410-6 (DD Form 1423) are invoked and the DD Form 1423 is not used, the data shall be delivered by !he contractor in accordance with the contractor purchase order requirements. - 6.3 Subject term (key word) listing. Solar design procedures Passive solar design procedures Heating systems #### MIL-HDBK-1003/19 #### APPENDIX A # SYSTEM PERFORMANCE CORRELATION PARAMETERS # Direct Gain Systems ## SYSTEM NUMBERING CONVENTION First digit: Mass-area to glazing-area ratio $(A_{\Gamma}m_{1}/A_{\Gamma}c_{1})$ (3, 6, or 9) Second digit: Thermal storage mass thickness (THICK) (2, 4, or 6) Third digit: R-value of night insulation (0, 4, or 9) Fourth digit: Number of glazings (NGL) (1, 2, or 3) | System
 Number |
 F
 | G
 | U rc7 | [alpha] |
 DHC/A _F c ₇
 | EHC/A _F c ₇ |
 e _F
 | |-------------------|-------------|-------|-------|---------|---|-----------------------------------|--------------------------| | 3201 | 0.458 | 22.73 | 1.10 | 0.94 | 14.94 | 14.49 | 1. | | 3202 | 0.576 | 10.49 | 0.49 | 0.94 | 14.94 | 14.49 | 1. | | 3203 | 0.661 | 6.65 | 0.31 | 0.94 | 14.94 | 14.49 | 1. | | 3241 | 0.608 | 9.77 | 0.61 | 0.94 | 14.94 | 14.49 | 1. | | 3242 | 0.623 | 5.21 | 0.35 | 0.94 | 14.94 | 14.49 | 1. | | 3243 | 0.669 | 3.53 | 0.28 | 0.94 | 14.94 | 14.49 | 1. | | 3291 | 0.637 | 8.33 | 0.53 | 0.94 | 14.94 | 14.49 | 1. | | 3292 | 0.651 | 3.77 | 0.27 | 0.94 | 14.94 | 14.49 | 1. | | 3293 | 0.685 | 2.33 | 0.19 | 0.94 | 14.94 | 14.49 | 1. | | 3401 | 0.754 | 24.89 | 1.10 | 0.94 | 28.38 | 27.85 | 1. | | 3402 | 0.838 | 10.73 | 0.49 | 0.94 | 28.38 | 27.85 | 1. | | 3403 | 0.886 | 6.17 | 0.31 | 0.94 | 28.38 | 27.85 | 1. | | 3441 | 0.822 | 10.25 | 0.61 | 0.94 | 28.38 | 27.85 | 1. | | 3442 | 0.834 | 4.97 | 0.35 | 0.94 | 28.38 | 27.85 | 1. | | 3443 | 0.875 | 3.05 | 0.28 | 0.94 | 28.38 | 27.85 | 1. | | 3491 | 0.832 | 8.57 | 0.53 | 0.94 | 28.38 | 27.85 | 1. | | 3492 | 0.852 | 3.48 | 0.27 | 0.94 | 28.38 | 27.85 | 1. | | 3493 | 0.882 | 1.80 | 0.19 | 0.94 | 28.38 | 27.85 | 1. | | 3601 | 0.826 | 25.13 | 1.10 | 0.94 | 35.79 | 36.73 | 1. | | 3602 | 0.894 | 10.49 | 0.49 | 0.94 | 35.79 | 36.73 | 1. | | 3603 | 0.943 | 5.93 | 0.31 | 0.94 | 35.79 | 36.73 | 1. | | 3641 | 0.870 | 10.01 | 0.61 | 0.94 | 35.79 | 36.73 | 1. | | 3642 | 0.870 | 4.49 | 0.35 | 0.94 | 35.79 | 36.73 | 1. | | 3643 | 0.910 | 2.57 | 0.28 | 0.94 | 35.79 | 36.73 | 1. | | 3691 | 0.865 | 8.09 | 0.53 | 0.94 | 35.79 | 36.73 | 1. | | 3692 | 0.889 | 3.00 | 0.27 | 0.94 | 35.79 | 36.73 | 1. | | 3693 | 0.916 | 1.32 | 0.19 | 0.94 | 35.79 | 36.73 | 1. | | 6201 | 0.719 | 25.06 | 1.10 | 0.97 | 29.88 | 28.05 | 1. | | 6202 | 0.812 | 10.90 | 0.49 | 0.97 | 29.88 | 28.05 | 1. | | 6203 | 0.867 | 6.34 | 0.31 | 0.97 | 29.88 | 28.05 | 1. | | 6241 | 0.786 | 10.18 | 0.61 | 0.97 | 29.88 | 28.05 | 1. | | 6242 | 0.810 | 5.14 | 0.35 | 0.97 | 29.88 | 28.05 | 1. | | 6243 | 0.857 | 3.22 | 0.28 | 0.97 | 29.88 | 28.05 | 1. | # Direct Gain Systems - Continued ## SYSTEM NUMBERING CONVENTION First digit: Mass-area to glazing-area ratio $(A_{\Gamma}m_{1}/A_{\Gamma}c_{1})$ (3, 6, or 9) Second digit: Thermal storage mass thickness (THICK) (2, 4, or 6) Third digit: R-value of night insulation (0, 4, or 9) Fourth digit: Number of glazings (NGL) (1, 2, or 3) | System
 Number | F
 | G
 | Ŭ r [©] ٦ | [alpha] | DHC/A _F c _l | EHC/A _F c ₇ | e _F
 | |-------------------|-------|-------|--------------------|---------|-----------------------------------|-----------------------------------|--------------------| | 6291 | 0.796 | 8.50 | 0.53 | 0.97 | 29.88 | 28.05 | 1. | | 6292 | 0.832 | 3.70 | 0.27 | 0.97 | 29.88 | 28.05 | 1. | | 6293 | 0.866 | 2.02 | 0.19 | 0.97 | 29.88 | 28.05 | 1. | | 6401 | 1.013 | 26.74 | 1.10 | 0.97 | 56.76 | 53.93 | 1. | | 6402 | 1.024 | 10.66 | 0.49 | 0.97 | 56.76 | 53.93 | j 1. | | 6403 | 1.062 | 5.86 | 0.31 | 0.97 | 56.76 | 53.93 | 1. | | 6441 | 0.964 | 10.18 | 0.61 | 0.97 | 56.76 | 53.93 | 1. | | 6442 | 0.966 | 4.42 | 0.35 | 0.97 | 56.76 | 53.93 | j 1. | | 6443 | 1.015 | 2.50 | 0.28 | 0.97 | 56.76 | 53.93 | 1. | | 6491 | 0.967 | 8.26 | 0.53 | 0.97 | 56.76 | 53.93 | 1. | | 6492 | 0.964 | 2.74 | 0.27 | 0.97 | 56.76 | 53.93 | 1. | | 6493 | 1.020 | 1.30 | 0.19 | 0.97 | 56.76 | 53.93 | 1. | | 6601 | 1.089 | 26.98 | 1.10 | 0.97 | 71.58 | 71.11 | 1. | | 6602 | 1.079 | 10.42 | 0.49 | 0.97 | 71.58 | 71.11 | 1. | | 6603 | 1.095 | 5.38 | 0.31 | 0.97 | 71.58 | 71.11 | 1. | | 6641 | 1.013 | 9.94 | 0.61 | 0.97 | 71.58 | 71.11 | 1. | | 6642 | 1.019 | 4.18 | 0.35 | 0.97 | 71.58 | 71.11 | 1. | | 6643 | 1.046 | 2.02 | 0.28 | 0.97 | 71.58 | 71.11 | 1. | | 6691 | 1.005 | 8.02 | 0.53 | 0.97 | 71.58 | 71.11 | 1. | | 6692 | 0.997 | 2.26 | 0.27 | 0.97 | 71.58 | 71.11 | 1. | | 6693 | 1.051 | 0.82 | 0.19 | 0.97 | 71.58 | 71.11 | 1. | | 9201 | 0.906 | 26.43 | 1.10 | 0.98 | 44.82 | 40.75 | 1. | | 9202 | 0.943 | 10.83 | 0.49 | 0.98 | 44.82 | 40.75 | 1. | | 9203 | 0.983 | 6.03 | 0.31 | 0.98 | 44.82 | 40.75 | 1. | | 9241 | 0.896 | 10.35 | 0.61 | 0.98 | 44.82 | 40.75 | 1. | | 9242 | 0.909 | 4.83 | 0.35 | 0.98 | 44.82 | 40.75 | 1. | | 9243 | 0.962 | 2.91 | 0.28 | 0.98 | 44.82 | 40.75 | 1. | | 9291 | 0.889 | 8.43 | 0.53 | 0.98 | 44.82 | 40.75 | 1. | | 9292 | 0.926 | 3.39 | 0.27 | 0.98 | 44.82 | 40.75 | 1. | | 9293 | 0.967 | 1.71 | 0.19 | 0.98 | 44.82 | 40.75 | 1. | | 9401 | 1.191 | 28.11 | 1.10 | 0.98 | 85.14 | 78.34 | 1. | | 9402 | 1.131 | 10.59 | 0.49 | 0.98 | 85.14 | 78.34 | 1. | | 9403 | 1.149 | 5.55 | 0.31 | 0.98 | 85.14 | 78.34 | 1. | | 9441 | 1.050 | 10.11 | 0.61 | 0.98 | 85.14 | 78.34 | 1. | | 9442 | 1.063 | 4.35 | 0.35 | 0.98 | 85.14 | 78.34 | 1. | | 9443 | 1.095 | 2.19 | 0.28 | 0.98 | 85.14 | 78.34 | 1. | # Direct Gain Systems - Continued ## SYSTEM NUMBERING CONVENTION First digit: Mass-area to glazing-area ratio $(A_{\Gamma}m_{1}/A_{\Gamma}c_{1})$ (3, 6, or 9) Second digit: Thermal storage mass thickness (THICK) (2, 4, or 6) Third digit: R-value of night insulation (0, 4, or 9) Fourth digit: Number of glazings (NGL) (1, 2, or 3) | System
 Number | F | G
 | U ГСЛ | [alpha] | DHC/A _F C ₇ | EHC/A _F C ₇ | e _F | |--|---|---|--|--|---|---|--| | 9491
 9492
 9493
 9601
 9602
 9603
 9641
 9642
 9643 | 1.041
 1.059
 1.097
 1.268
 1.200
 1.220
 1.113
 1.093
 1.143 | 8.19
 2.67
 0.99
 28.35
 10.59
 5.55
 10.11
 3.87
 1.95 | 0.53
0.27
0.19
1.10
0.49
0.31
0.61
0.35 | 0.98
0.98
0.98
0.98
0.98
0.98
0.98 | 85.14
 85.14
 85.14
 107.37
 107.37
 107.37
 107.37
 107.37 | 78.34
78.34
78.34
103.29
103.29
103.29
103.29
103.29
103.29 | 1.
 1.
 1.
 1.
 1.
 1. | | 9691 9692 9693 | 1.143
 1.088
 1.088 | 7.95
2.19
2.19 | 0.28
0.53
0.27
0.27 | 0.98
0.98
0.98 | 107.37
 107.37
 107.37
 107.37 | 103.29
 103.29
 103.29
 103.29 | 1.
 1.
 1. | ## Radiant Panels ## SYSTEM NUMBERING CONVENTION First digit: Mass-area to glazing-area ratio
$(A_{\Gamma}m_{\overline{1}}/A_{\Gamma}c_{\overline{1}})$ (3, 6, or 9) Second digit: Thermal storage mass thickness (THICK) (4-inch only) Third digit: Number of glazings (NGL) (2 only) | System
 Number | F | G | U г ^С Л | [alpha]

 | DHC/A _F c ₇

 | EHC/A _F C ₇

 | e _F
 | |-------------------|----------------|--------------|--------------------|------------------|--|--|--------------------| | 342 | 0.605 | 3.84 | 0.31 | 0.95 | 28.38 | 27.85 | 0. | | 642
 942 | 0.734
0.812 | 3.60
3.36 | 0.31
0.31 | 0.95
0.95 | 56.76
 85.14 | 53.93
 78.34 | 0.
 0. | | 642 | 0.734 | 3.60 | 0.31 | 0.95 | 56.76 | 53.93 | | # Thermosiphoning Air Panels (Frontflow Systems with RTAP = 11) ## SYSTEM NUMBERING CONVENTION First digit: Mass-area to glazing-area ratio (3, 6, or 9) Second digit: Thermal storage mass thickness (THICK) (2, 4, or 6) Third digit: Number of glazings (NGL) (1 or 2) | System
 Number | F | G | ŬΓCΊ | [alpha] | DHC/A _F c ₇ | e rd7 | |--|---|--|--|--|---|--| | 321
322
341
342
361
362
621
622
641
642
661
662
921
922 | 0.277
0.336
0.330
0.398
0.341
0.411
0.477
0.573
0.563
0.673
0.673
0.699
0.649 | 1.63
1.54
1.63
1.54
1.63
1.54
1.63
1.54
1.63
1.54
1.63 | 0.068
0.064
0.068
0.064
0.068
0.064
0.068
0.064
0.068
0.064
0.068
0.064 | 0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95 | 14.94
14.94
28.38
28.38
35.79
35.79
29.88
29.88
56.76
56.76
71.58
71.58
44.82 | 0.36
0.58
0.36
0.58
0.36
0.58
0.36
0.58
0.36
0.58
0.36
0.58 | | 941
 942
 961
 962 | 0.756
0.896
0.787
0.932 | 1.63
1.54
1.63
1.54 | 0.068
 0.064
 0.068
 0.064 | 0.95
 0.95
 0.95
 0.95 | 85.14
 85.14
 107.37
 107.37 | 0.36
 0.58
 0.36
 0.58 | ## Unvented Trombe Walls ## SYSTEM NUMBERING CONVENTION First digit: Mass thickness (1, 2, 3, or 4 implies 6-inch, 9-inch, 12-inch, or 18-inch, respectively) Second digit: [rho]ck product (1, 2, or 3 implies 7.5, 15, or 30, respectively) Third digit: R-value of night insulation (0 or 9) Fourth digit: Number of glazings (NGL) (1, 2, or 3) Fifth digit: Wall surface (1 or 2 implies flat black surface or selective surface, respectively) | System
 Number | F | G | υrcl | [alpha] | e rd7 | |--|---|--|--|--|--| | 11021
 12021
 13021
 21021
 22021
 23021
 31021
 32021
 33011
 33012
 33021
 33021
 33031
 33911
 33912
 33921
 33922
 33931 | 0.240
0.551
0.616
0.208
0.291
0.343
0.466
0.496
0.484
0.166
0.644
0.802
0.761
0.611
0.812
0.755
0.877 | 2.86
5.04
6.00
2.14
3.10
3.82
1.66
3.60
7.44
3.12
4.80
2.16
3.36
3.12
0.72
1.68
0.48
0.02 | 0.19
0.24
0.27
0.16
0.21
0.25
0.14
0.19
0.29
0.23
0.24
0.20
0.20
0.15
0.15 | 0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95 | 0.51
0.64
0.72
0.43
0.56
0.67
0.38
0.51
0.52
0.62
0.64
0.72
0.78
0.52
0.64
0.72
0.78 | | 41021
 42021
 43021 | 0.126
0.406
0.570 | 1.18
2.88
3.84 | 0.11
0.16
0.21 | 0.95
0.95
0.95 | 0.29
0.43
0.56 | #### Vented Trombe Walls ## SYSTEM NUMBERING CONVENTION First digit: Mass thickness (1, 2, 3, or 4 implies 6-inch, 9-inch, 12-inch, or 18-inch, respectively) Second digit: [rho]ck product (1, 2, or 3 implies 7.5, 15, or 30, respectively) Third digit: R-value of night insulation (0 or 9) Fourth digit: Number of glazings (NGL) (1, 2, or 3) Fifth digit: Wall surface (1 or 2 implies flat black surface or selective surface, respectively) | System
 Number | F | G | ՄՐԸ | [alpha] | e rd7 | |---|---|--|--|--|--| | 11021
 12021
 13021
 21021
 22021
 23021
 31021
 32021
 33011
 33012
 33021
 33022
 33031 | 0.292
0.605
0.629
0.280
0.654
0.725
0.259
0.638
0.545
0.809
0.741
0.900
0.872 | 3.10
5.28
6.00
2.38
4.78
5.74
2.14
4.32
7.92
3.60
5.28
2.64
3.84 | 0.19
0.24
0.27
0.16
0.21
0.25
0.14
0.19
0.29
0.23
0.24
0.20 | 0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95 | 0.72
0.74
0.76
0.69
0.72
0.74
0.67
0.70
0.57
0.70
0.72
0.72
0.79 | | 33911
 33912
 33921
 33922
 33931
 41021
 42021
 43021 | 0.872
0.728
0.924
0.861
0.983
0.595
0.215
0.570
0.709 | 4.08
1.44
2.16
0.96
0.22
1.66
3.60
4.56 | 0.20
0.20
0.15
0.15
0.13
0.13
0.11
0.16
0.21 | 0.95
0.90
0.95
0.90
0.95
0.95
0.95 | 0.80
0.57
0.70
0.72
0.79
0.80
0.65
0.67
0.70 | ## Water Walls ## SYSTEM NUMBERING CONVENTION First digit: Wall thickness (1, 2, 3, 4, 5, or 6 implies 3-inch, 6-inch, 9-inch, 12-inch, 18-inch, or 24-inch, respectively) Second digit: R-value of night insulation (0 or 9) Third digit: Number of glazings (NGL) (1, 2, or 3) Fourth digit: Wall surface (1 or 2 implies flat black surface or selective surface, respectively) | System
 Number | F | G | υ _г сη | [alpha] | e rd7 | |--|---|---|--|--|--| | 1021
 2021
 3011
 3012
 3021
 3022
 3031
 3911
 3912
 3921
 3922
 3931
 4021 | 0.684
0.833
0.735
0.904
0.885
0.973
0.981
0.873
0.960
0.981
0.992
1.039
0.907 | 6.94
6.48
10.80
3.36
6.24
2.40
4.06
3.84
0.48
1.92
0.00
0.94
6.00 | 0.31
0.31
0.41
0.30
0.31
0.24
0.25
0.25
0.17
0.18
0.14
0.15
0.31 | 0.95
0.95
0.95
0.90
0.95
0.90
0.95
0.95 | 0.83
0.83
0.73
0.80
0.83
0.86
0.98
0.73
0.80
0.83
0.86
0.98 | | 5021 | 0.931
 0.954 | 5.74
5.74 | 0.31 | 0.95
0.95 | 0.83
 0.83 | ## Concrete Block Walls #### SYSTEM NUMBERING CONVENTION First digit: Unfilled or filled (1 implies unfilled blocks and 2 implies filled blocks) Second digit: R-value of night insulation (0 or 9) Third digit: Number of glazings (NGL) (1 or 2) | System
 Number | F | G | ՄՐԸ | [alpha] | e rd7 | |-------------------|-------|------|------|---------|-------| | 101 | 0.454 | 6.04 | 0.42 | 0.95 | 0.55 | | 102 | 0.500 | 3.88 | 0.28 | 0.95 | 0.55 | | 191 | 0.563 | 3.16 | 0.13 | 0.95 | 0.55 | | 192 | 0.607 | 1.96 | 0.11 | 0.95 | 0.55 | | 201 | 0.575 | 6.76 | 0.47 | 0.95 | 0.59 | | 202 | 0.630 | 4.36 | 0.31 | 0.95 | 0.59 | | 291 | 0.737 | 3.64 | 0.14 | 0.95 | 0.59 | | 292 | 0.749 | 1.96 | 0.12 | 0.95 | 0.59 | ## MIL-HDBK-1003/19 APPENDIX A ## Sunspaces ## SYSTEM NUMBERING CONVENTION First digit: Sunspace type (1 or 2 implies attached or semi-enclosed, respectively) Second digit: Glazing tilt from vertical (1 or 2 implies 0 degrees or 40 degrees, respectively) Third digit: Common wall (1 or 2 implies masonry or insulated, respectively) Fourth digit: R-value of night insulation (0 or 9) | System
 Number | F | G | ՄՐՐ | [alpha] | e rd7 |
--|--|--|--|--|--| | 1210
 1219
 1220
 1229
 2110
 2119
 2120
 2129
 2210
 2220
 2229 | 0.551
0.673
0.516
0.659
0.786
0.886
0.580
0.750
0.699
0.826
0.607
0.772 | 5.76
3.12
7.20
4.08
6.96
4.32
5.28
3.84
6.96
3.36
6.48
3.12 | 0.27
0.21
0.04
0.04
0.38
0.28
0.08
0.08
0.26
0.26
0.07 | 0.96
0.96
0.94
0.95
0.95
0.95
0.94
0.94
0.96
0.96
0.94 | 0.70
0.70
0.53
0.53
0.71
0.71
0.54
0.54
0.68
0.68
0.50 | ## WEATHER PARAMETERS | | | | | | | | F4 F1/4 F 1/01 | | | | | AT 22.6 | |----------------------------|------------------|---------------|-------------------|------------------|------------|-------------------------|--------------------------|-----------------|-----------|-------------------------|-------------------|---------------------------| | BIRMINGHAM, | ALABAMA
TB3(| | TB40 | TB45 | TE | 50 | ELEVATION
TB55 | = 630
7860 | 1 | B65 | TB70 | AT = 33.6
TB80 | | SOUTH-VERT | . (M= 1) |) | (M= 1) | (M= }) | (M=
79. | 1) | (M≈ 1)
57.93 | (M= 1)
43.80 | (M= | : 1)
I.11 | (M= 1)
27.59 | (M≃ 1)
19.94 | | VT 1/00
VT2/00 | 976.38
831.23 | 3 | 184.18
156.80 | 115.04
97.94 | 67. | .38 | 49.31 | 37.29 | 29 | .04 | 23.49 | 16.98 | | VT3/DD | 721.52 | 2 | 136.11 | 85.01 | 58, | .49
282 | 42.81
385 | 32.37
509 | | 654 | 20.39
808 | 14.74
1118 | | MONTHLY DD
ANNUAL DD | 54 | 3
4 | 121
314 | 194
581 | | 177 | 1504 | 2174 | 3 | 1019 | 4077 | 6849 | | PARAMETER A | . 179 | | .658 | .681 | .6 | 42 | .590 | .568 | | .568 | .5 9 1 | .622 | | AZIMUTH AND
A3 | . 1719 | | .0429 | .0440 | .04 | 187 | .0540 | .0563 | .0 |)564 | .0547 | .0548 | | A2 | 2003 | | .0246
0836 | .0918
1625 | . 16
26 | | .2918
~.4180 | .3755
5272 | | 1420
5160 | ,5079
-,7059 | .7050
9853 | | A3
A4 | 0221
060 | 1 | .0376 | .0970 | 20 | | .2404 | .3073 | | 3620 | .4167 | .5781 | | A5 | 1790 | | 0373 | 0370
0445 | 04
04 | | 0507
0445 | 0595
0445 | | 2689
2445 | 0797
0445 | 1144
0445 | | 81
82 | 0449
958 | 4 | 0445
9584 | 9584 | 95 | 584 | 9584 | 9584 | 9 | 584 | ~.9584 | 9584 | | B3
B4 | .577
.911 | | .5777
.9117 | .5777
.9117 | .5 | 777
117 | .5777
.9117 | .5777
.9117 | | 5777
9116 | .5777
.9116 | .5777
.9117 | | 85 | -1.226 | 0 - | 1.2261 | -1.2260 | -1.2 | | -1.2260 | -1.2260 | | 2260 | -1.2260 | -1.2260 | | TOTAL ANNUAL DUE SOUTH A | | | | = 265272 | | пт | A2 = 22076 | ď | G. | TA3 = 18 | 197 12 | | | AZIMUTH AND | TILT C | OEF. | Cl = | 0170 | | 2050 | C3 = - | . 4159 | C4 = | 1.7706 | €5 ≠-1 | | | MONTH:
TAVE; | Jan
43 | FEB
46 | Mar
53 | APR
62 | MAY
70 | JUN
15 | JUL
79 | AUG
77 | SEP
72 | 00T
62 | NOV
53 | DEC
44 | | QHOR: | 710 | 943 | 1284 | 1633 | 1914 | 1864 | 1796 | | 1461 | 1217 | 841 | 641 | | | | | | · · | | | | | | | | | | MODELE ALAC | | | | | | | ELEVATION | 1 - 220 | | | | LAT = 30.7 | | MOBILE, ALAB | TB3 | | TB40 | TB45 | | B50 | TB55 | TB60 | | TB65 | TB70 | TB80 | | SOUTH-VERT | [±M}
NA |) , | (M≈ 1)
1863.20 | (M= 1)
538.38 | (M±
239 | | (M= 1)
134.50 | (M≃ 1)
84.03 | | = 1)
7.44 | (M= 1)
42.50 | (M= 1)
27.39 | | VT2/00 | NA
NA | | 1583.23 | 457.48 | 203 | | 114.29 | 71.40 | 4 | B.81 | 36.11 | 23.27 | | VT3/DD
MONTHLY DD | NA | ^ | 1374.00 | 397.02
44 | | .88
99 | 99.18
177 | 61.97
283 | | 2.3 6
414 | 31.34
559 | 20.20
867 | | ANNUAL DD | | Ŏ | 13
31 | 132 | | 326 | 642 | 1130 | | 1795 | 2658 | 5184 | | PARAMETER A
AZIMUTH AND | NA
TUT C | VEE | .702 | .664 | • | 567 | . 483 | .466 | | .477 | . 493 | .557 | | A) | NA | OLF. | 0000 | 0060 | 0 | | 0120 | 0139 | | 0135 | 0111 | 0005 | | A2
A3 | na
Na | | .3814
4803 | .3263
4196 | .3 | 541
5 9 9 | . 4269
5605 | .4776
6366 | - | 5399
7243 | .6155
8270 | .7940
-1.0796 | | A4 | NA | | . 2349 | , 2047 | .2 | 232 | .2733 | .3136 | | 3613 | .4190 | . 5543 | | A5
B1 | na
Na | | .0053
0081 | 0001
0081 | | 021
081 | 0078
0081 | 0184
0081 | | 0276
0081 | 0365
0081 | -,0577
-,0081 | | B2 | NA | | 9077 | 9077 | 9 | 077 | 9077 | 9077 | ٠. | 9077 | 9077 | 9077 | | B3
84 | NA
NA | | .5141
1.0145 | .5142
1.0144 | | 142
144 | .5141
1.0144 | ,5141
1,0144 | ۱. | 5141
0145 | .5141
1.0145 | .5141
1.0144 | | 85 | NA | | -1.2019 | -1.2019 | -1.2 | | -1.2019 | -1.2019 | | 2019 | ~1.2019 | -1.2019 | | TOTAL ANNUAL OUE SOUTH / | | | NOTIATOAR
(ATO | = 267445 | | 01 | TA2 = 2227! | 97 | Q | TA3 = 15 | 91687 | | | AZIMUTH AND | TILT C | OEF. | = 13 | .0301 | | 1798 | Ç3 ≠ - | 3900 | C4 = ` | 1.7247 | C5 =- | 1.0617 | | MONTH:
TAVE: | JAN
52 | FEB
52 | MAR
59 | APR
64 | MAY
74 | JUN
78 | 3UL
79 | AUG
79 | SEP
76 | 0CT
68 | NOV
58 | DEC
53 | | QHOR: | 843 | 1089 | | 1696 | 1853 | 1794 | | 1586 | 1475 | 1323 | 933 | 757 | | | | | | | | | | | | | | | | MONTGOMERY, | AI ARAMA | 1 | | | | | ELEVATIO | N = 203 | | | | LAT = 32.3 | | | TB3 | 30 | TB40 | TB45 | | B 50 | TB 5 5 | T860 | | TB65 | TB70 | TB80 | | SOUTH-VER' | T. (M≖12
NA | 2) | (M±12)
371.03 | (M=12)
199.56 | | .75 | (M≈ 1)
74.56 | (M= 1)
52.93 | | ⊨ 1)
i0.13 | (M± 1)
32.04 | (M= 1)
22.62 | | VT2/DD | NA | | 316.52 | 170.24 | 96 | . 47 | 63.43 | 45.03 | 3 | 4.14 | 27.26 | 19.24 | | VT3/DD
MONTHLY DD | NA | | 274.86
68 | 147.85
127 | | 205 | 55.06
318 | 39.08
448 | • | 29.63
591 | 23.66
741 | 16.70
1049 | | ANNUAL DD | • | 19 | 185 | 379 | | 695 | 1155 | 1774 | | 2572 | 3546 | 6202
.590 | | PARAMETER A
AZIMUTH AN | NA
1 Tilt o | | . 428 | .374 | • | 419 | . 468 | .510 | | .537 | .550 | .350 | | A1 | NA | | 1373 | 1652 | | 489 | . 1270 | .1100 | | 0982 | .0890
.3923 | .0679
.6379 | | A2
A3 | na
Na | | .4976
4841 | .6239
6160 | | 1030
1237 | . 1649
2002 | .2192
-,2692 | | .2899
.3639 | 5037 | 8520 | | A4 | NA | | . 2692 | .3501 | - 1 | 1693 | .2073 | .2458 | | 3040 | .3887
0738 | .5819
-,1124 | | A5
81 | NA
NA | | .1118
.0575 | . 1279
.0575 | |)444
)24} | 043 6
0241 | 0467
0241 | | .0573
.0241 | 0241 | 0241 | | B2 | NA | | -1.0340 | -1.0340 | ٠,9 | 219 | 9219 | -,9219 | | 9219 | 9219 | 921 9
.4981 | | 83
84 | NA
NA | | .6305
.8497 | .6305
.8497 | | 1981
1378 | .4981
.9378 | .4980
.9378 | | . 4980
. 9378 | .4981
.9378 | . 937B | | 85 | NA | | -1.2590 | -1.2590 | -1.2 | | -1.2456 | -1.2457 | | 2456 | -1.2456 | -1.2456 | | TOTAL ANNUAL
DUE SOUTH | | | | = 268541 | | 0 | TA2 = 2234 | 33 | (|)TA3 = 1 | | | | AZIMUTH AM | O TILT O | COEF. | = f3 | .0006 | | 1783 | Ç3 = | 4647 | C4 = | 1.8211 | C5 = | -1.1514 | | MONTH:
TAVE: | JAN
46 | FE8
48 | | APR
65 | MAY
71 | JUN
78 | | AUG
80 | SEP
75 | 0CT
64 | NOV
54 | DEC
46 | | QHOR: | 756 | 926 | | 1723 | 1883 | 1969 | | 1723 | 1534 | 1203 | 905 | 730 | | SOUTH-VERT. (M=12)
VT 1/DD NA
VT2/DD NA
VT3/DD NA | TB40 TB45 (M=12) (M=12) 1425.49 562.22 1219.26 480.88 1059.44 417.85 26 66 43 140 .508 .594 | (M=12)
293.33 | ELEVATION = 1112
TB55 TB60
(M=12) (M=12)
176.30 118.82
150.80 101.63
131.03 88.31
209 310
634 1090
.573 .556 | (M=12)
85.84
73.42
63.80 | LAT = 33.4
TB70 TB80
(M=12) (M=12)
64.94 42.15
55.54 36.05
48.26 31.33
567 874
2503 4544
.514 .488 | |--|---|---|--|---|--| | A1 HA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B4 NA B5 NA | | -,0378
-,3588
-,3666
-,2706
-,0135
-,0249
-1,1544
-,7237
-,7977 | 03430313
.4854 .6118
51726769
.3655 .4640
.00690069
.0249 .0249
-1.1544 -1.1544
.7237 .7237
.7977 .7977
~1.3210 -1.3210 | 0299
.7523
8587
-5748
0252
.0249
-1.1544
.7237
.7977
-1.3210 | 02840251
.8935 1.2002
-1.0471 -1.4688
.6858 .9244
04630972
.0249 .0249
-1.1544 -1.1544
.7237 .7236
.7977 .7977
-1.3210 -1.3211 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF, MONTH: JAN FEI TAVE: 52 50 QHOR: 1025 1403 | QTA1 = 377059
C1 = .0268
3 MAR APR
4 61 68 | CZ = ~.1794
MAY JUN
78 88
2708 2696 | A2 = 313598
C3 =5866
JUL AUG
92 90
2428 2290 | QTA3 = 20
C4 = 1.9450
SEP OCT
85 72
2031 1571 | 59197
C5 =-1.3422
NOV DEC
60 51
1207 920 | | SOUTH-VERT (M=12) VT1/DD
533.11 VT2/DD 456.61 VT3/DD 396.89 MONTHLY DD 78 | 173.78 117.35
148.85 100.52
129.38 87.37
238 352
784 1304
.584 .536 | TB50
(M=12)
85.99
73.65
64.01
481
1975 | ELEVATION = 5023
TB55 TB60
(M=12) (M=12)
66.71 53.84
57.14 46.11
49.66 40.08
620 768
2801 3783
.463 .436 | TB65 | LAT = 34.7
TB80
(M=12) (M= 4)
38.47 31.50
32.95 25.39
28.64 21.41
1075 886
6261 9332
.400 .343 | | A10055
A2 -2413
A32371
A4 .1417
A5 .0275
B10079
B2 -1.2022
B3 .7491
B4 .7470
B5 -1.3476 | 0020 .0034
.6056 .8188
63399000
.3664 .5108
.0471 .0330
00790079
-1.2022 -1.2023
.7491 .7491
.7470 .7470
-1.3476 -1.3476 | .6803
.0080
0079
-1.2023
.7492
.7470 | .0171 .0244 1.3367 1.6143 -1.5710 -1.9282 .8695 1.06050151036300790079 -1.2023 -1.2023 .7491 .7492 .7470 .7470 -1.3476 -1.3476 | .0314
1.8697
-2.2571
1.2363
0547
0079
-1.2022
.7491 | .03861797 2.114) -6.3069 -2.5817 8.3292 1.4101 -4.25550808 .59010079 .0759 -1.2022 .6718 .7491 -1.7396 .7470 2.7328 -1.3476 -1.5482 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 36 3 QHOR: 1044 131 | RADIATION
QTA1 = 385714
C1 = .0378
B MAR APR
8 46 50
8 1819 2316 | QT
C2 = 1548
MAY JUN
60 72
2623 2761 | JUL AUG | QTA3 = 2
C4 = 1.8583
SEP OCT
68 57
1928 1570 | C5 =-1.3820
NOV DEC | | TUCSON, ARIZONA TB30 SOUTH-VERT. (M=12) VT1/DD NA VT2/DD NA VT3/DD NA MONTHLY DD 3 ANNUAL DD 5 PARAMETER A NA AZIMUTH AND TILT COEF. | TB40 TB45
(M=12) (M=12)
1309.57 592.71
1120.40 507.09
973.71 440.70
31 68
69 185
.645 .510 | TB50
(M=12)
318.25
272.28
236.63
127
416
.422 | ELEVATION = 2556
TB55 TB60
(M=12) (M= 2)
191.14 127.55
163.53 107.96
142.12 93.59
211 289
794 1330
.403 .401 | (M= 2)
92.13
77.98
67.60
400
2025 | TB70 1B80
(M= 1) (M= 1)
69.24 45.07
59.12 38.49
51.37 33.44
577 886
2879 5152
.364 .376 | | A1 MA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B5 NA | .0178 .0264
.4491 .6493
-5059 -7196
.2814 .4009
.0175 .0353
00490049
-1.1867 -1.1887
.7300 .7300
.8442 .8442
-1.3533 -1.3533 | .0358
.8979
-1.0019
.5597
.0428
0049
-1.1667
.7300
.8442
-1.3533 | .03980233 1.04234393 -1.1890 .3507 .66402081 .027512980049 .0142 -1.18878480 .7300 .2412 .8442 1.2516 -1.3533 -1.4306 | 2420
.0681
0603
1665
.0142
8480
.2412 | .0271 .0332
1.2912 1.6468
-1.7162 -2.2131
.9499 1.2077
16262132
.0015 .0015
-1.1138 -1.1138
.6298 .6298
.9238 .9238
-1.3634 -1.3634 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 51 5 QHOR: 1083 141 | OTA1 = 372002
C1 = .0379
B MAR APR
1 59 67 | 07
C2 =1607
MAY JUN
73 84
2691 2719 | FA2 = 309460
C3 =6371
JUL AUG
85 83
2307 2178 | QTA3 = 2
C4 = 1.9989
SEP OCT
79 69
1954 1634 | 265702
C5 = -1.3575
MOV DFC
57 51
1207 1012 | | WINSLOW, ARIZONA TB30 SOUTH-VERT. (M=12) VT1/DD 610.64 160.36 VT2/DD 523.30 137.42 VT3/DD 454.88 119.45 MONTHLY DD 70 268 ANNUAL DD 217 PARAMETER A 372 AZIMUTH AND TILT COEF. | TB45
(M±12)
107.84
92.42
80.33
398
1476
.482 | T850
(M=12) (M
79.45 6
68.09 5 | LEVATION = 4882
TB55 TB60
1812) (M=12)
52.19 50.91
53.30 43.63
46.33 37.93
691 844
3029 4014
.448 .428 | (M±12)
43.02
36.87
32.05
998
5147 | TB70 TB80 (M=12) (M=12) 37.24 29.35 31.91 25.15 27.74 21.86 1153 1463 6429 9413 .396 .339 | |--|--|--|---|--|--| | A1 .0869 .0694 A2 .7940 .7700 A375367985 A4 .4309 .4422 A5 .1183 .0700 B101300130 B2 -1.2315 -1.2315 B3 .7824 .7824 B4 .7369 .7369 B5 -1.3494 -1.3494 | .0721
.8998
9646
.5297
.0609
0130
-1.2315
.7824
.7369
-1.3494 | 1.0757 1.
-1.1832 -1.
.6464 .0527
-0130
-1.2315 -1.
.7824 .7369 | .0819 .0869
.2741 1.4987
.4335 -1.7240
.7809 .9369
.0397 .0191
.01300130
.2315 -1.2315
.7824 .7824
.7369 .7369
.3493 -1.3494 | 1.7301
-2.0336
1.1022
0095
0130
-1.2315
.7824
.7369 | .0953 .1192 1.9838 2.7808 -2.3778 -3.4503 1.2860 1.86420439146001300130 -1.2315 -1.2315 .7824 .7824 .7369 .7369 -1.3494 -1.3494 | | | = 389291
.0556
APR
52
2345 | QTA2
C2 =2014
MAY JUN
63 72
2625 2726 | = 324229
C3 =5588
JUL AUG
78 74
2382 2131 | QTA3 = 2
C4 = 1.8641
SEP OCT
69 55
1931 1521 | 78408
C5 =-1.3937
NOV DEC
43 32
1107 950 | | YUMA, ARIZONA TB30 SOUTH-VERT. (M= 1) (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD PARAMETER A AZIMUTH AND TILT COEF. | TB45
(M=12)
2412.82
2064.05
1793.66
16
36
.196 | 7850
(M±12) (P
807.75 36
690.99 31 | LEVATION = 207
TBSS TB60
M=12) (M= 1)
67.48 193.30
14.36 165.02
73.18 143.37
106 200
308 654
.446 .567 | (M≈ 1)
119.58
102.09
88.69
324
1171 | TB70 TB80 (M= 1) (M= 1) 83.27 50.19 71.09 42.85 61.76 37.22 465 771 1870 3801 .611 .551 | | A1 NA NA
A2 NA NA
A3 NA NA
A4 NA NA
A5 NA NA
B1 NA NA
B2 NA NA
B3 NA NA
B4 NA NA
B5 NA NA | .0007
.6003
5490
.4319
.0441
0074
-1.1756
.7259
.8267
-1.3306 | .4205
3997
.3057
.0225
0074
-1.1756 -1.
.7259
.8267 | .0071 .0153
.4447 .2406
.4581 -3386
.3270 .1856
.0046 -0445
.00740092
.1756 -1.1073
.7259 .6344
.8267 .9261
.3306 -1.3500 | .3675
5047
.2789
0600
0092
-1.1073
.6344
.9261 | .0227 .0318
.5024 .0731
6855 -1.1985
.3798 .6595
-07931413
00920092
-1.1073 -1.1073
.6344 .6344
.9261 .9261
-1.3500 -1.3501 | | | = 381823
.0116
APR
71
2421 | QTA2
C2 =1436
MAY JUN
80 86
2737 2824 | = 317478
C3 =6535
JUL AUG
92 92
2529 2327 | QTA3 = 2
C4 = 2.0058
SEP OCT
87 74
2070 1603 | 72506
C5 =-1.3550
NOV DEC
63 56
1217 986 | | FORT SMITH, ARKANSAS TB30 TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 744.93 148.36 VT2/DD 636.56 126.78 VT3/DD 552.98 110.13 MONTHLY DD 38 188 ANNUAL DD 104 512 PARMETER A .324 .598 AZIMUTH AND TILT COEF. | TB45
(M= 1)
91.65
78.32
68.04
305
908
.606 | TB50
(M= 1) (#
64.14 4
54.81 4
47.61 3 | LEVATION = 463
T855 TB60
4= 1) (M= 1)
88.50 38.68
41.45 33.05
36.01 28.71
577 723
2074 2844
.578 .563 | (M= 1)
32.02
27.36
23.77
873
3734 | LAT = 35.3
TB70 TB80
(M= 1) (M= 1)
27.28 20.95
23.31 17.91
20.25 15.56
1025 1335
4770 7453
.552 .569 | | A1 .0381 .0166
A2 .5304 .3119
A351563123
A4 .3256 .1979
A5 .1039 .0506
B101840184
B2 -1.1013 -1.1013
B3 .6859 .6860
B4 .7916 .7916
B5 -1.2873 -1.2873 | .0149
.3550
3546
.2273
.0565
0184
-1.1013
.6859
.7916
-1.2873 | .4047
4041
.2610
.0630
.0184
-1.1013 -1.
.68597916 | .0154 .0173
.4700 .5397
.47275505
.3065 .3569
.0688 .0712
.01840184
.1013 -1.1013
.6859 .6859
.7916 .7916
.2873 -1.2873 | -1.1013
.6859
.7916 | .0204 .0187
.6948 .9119
7468 -1.0688
.4758 .6526
.0587 .0082
01840184
-1.1013 -1.1013
.6859 .6859
.7916 .7916
-1.2873 -1.2873 | | | = 293307
0245
APR
63
1696 | QTA2
C2 = ~.2424
MAY JUN
70 76
1949 2019 | = 244328
C3 =4149
JUL AUG
81 79
2031 1872 | QTA3 = 20
C4 = 1.7591
SEP OCT
74 61
1550 1183 | 09951
C5 =-1.2331
NOV DEC
49 41
872 713 | | LITTLE ROCK, ARKANSAS TB30 SOUTH-VERT. (M± 1) VT1/DD 817.22 VT2/DD 697.10 VT3/DD 605.37 MONTHLY DD 33 ANNUAL DD 58 PARAMETER A .690 AZIMUTH AND TILT COEF. | (M= 1) (I
192.15 1
163.90 | 16.58
99.44 | TB50
(M= 1)
78.27
66.77
57.98
345
1141 | ELEVATION
TB55
(M= 1)
56.62
48.30
41.94
477
1738
.520 | = 266
TB60
(M= 1)
43.64
37.22
32.32
620
2455
.502 | T865
(M= 1)
35.27
35.28
30.08
26.13
767
3316
.497 | TB70
(M= 1)
29.42
25.09
21.79
919
4346
.508 | T = 34.7
TBB0
(M= 1)
22.02
18.78
16.31
1228
7010
.537 | |--|--|---|--|--|---|---|--|--| | A10295
A2
.0744
A30944
A4 .0460
A5 .0071
B10379
B2 -1.0327
B3 .6204
B4 .8546 | . 1644
2041 -
. 1059
. 0135
0379 -
-1.0327 -1
.6204
.8545
-1.2709 -1 | .2398
.2901
.1583
.0187
.0379
.0327 -1
.6204
.8546 | .6204
.8546 | .6204
.8546 | 0609
.4842
5635
.3286
.0360
0379
-1.0327
.6204
.8545
-1.2709 | 0583
.5584
6554
.3865
.0315
0379
-1.0327
.6204
.8546 | 0532
.6322
7552
.4484
.0189
-0379
-1.0327
.6204
.8545
-1.2710 | 0411
.8358
-1.0488
.6200
0270
0379
-1.0327
.6204
.8546
-1.2710 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 40 43 QHOR: 772 991 | OTA1 = 2
C1 =0
MAR
52 | 87021
545 C2
APR MAY
63 7
617 1967 | =223 i
r JUN
1 78 | A2 = 239109
C3 =
JUL
79
1991 | 4217
AUG
80 | QTA3 = 20
C4 = 1.7532
SEP OCT
73 63
1517 1243 | 05527
C5 =-1.1
NOV
50
847 | 2047
DEC
43
705 | | ARCATA, CALIFORNIA TB30 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD 0 ANNUAL DD 1 PARAMETER A NA | 762.45 2
650.85 2
565.10 2 | 76.29
35.85
04.78 | T850
(M=12)
123.52
105.60
91.72
142
792
.634 | ELEVATION
TB55
(M= 12)
66.10
56.51
49.08
266
1794
.669 | = 226
TB60
(M=12)
42.45
36.29
31.52
413
3318
.661 | TB65
(M=12)
30.89
26.41
22.94
568
5091
.592 | TB70
(M=12)
24.27
20.75
18.02
723
6908
.532 | T = 41.0
TB80
(M=12)
16.99
14.52
12.61
1033
10555
.457 | | AZIMUTH AND YILY COEF. A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B4 NA | . 1799
2113 -
. 1090
. 0207
. 0179
-1.0316 -1
. 6913
. 7164
-1.1481 -1 | .4199
5021
.2946
.0046
.0179
0316 –
.6913 | .5978
.0348
.0482
1.0918
.7536
.6383 | 1207
.9546
-1.0785
.7155
0071
.0482
-1.0919
.7536
.6383
-1.1440 | 1464
1.1880
-1.4154
.9275
0665
.0482
-1.0919
.7536
.6383
-1.1439 | 1925
1.5322
-1.8536
1.2104
1011
0482
-1.0919
7537
6383
-1.1439 | 2347
1.8336
-2.2193
1.4494
1156
.0482
-1.0919
.7537
.6383
-1.1439 | 2975
2.2748
-2.7416
1.7932
1254
.0482
-1.0919
.7536
.6383
-1.1439 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 46 47 QHOR: 545 794 | QTA1 = 2
C1 =1
MAR
47 | 256991
1083 C2
APR MA'
48 57
1644 187 | =2981
Y JUN
2 54 | A2 = 214291
C3 =
JUL
55
1798 | 2423
AUG
56 | QTA3 = 18
C4 = 1.5907
SEP OCT
55 53
1344 968 | 14258
C5 =~1.
NOV
50
546 | 1414
DEC
46
465 | | BAKERSFIELD, CALIFORNIA TB30 SOUTH-VERT. (M=12) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD } ANNUAL DD 1 PARAMETER A NA AZIMUTH AND TILT COEF. | 984,79 3
841,91 2 | 35.69
286.98 | TB50
(M=12)
159.03
135.96
118.10
156
489
.555 | ELEVATION
TB55
(M= 12)
90.08
77.01
66.89
275
974 | = 492
TB60
(M=12)
59.33
50.72
44.06
417
1661 | T865
(M=12)
43.64
37.31
32.41
567
2528
.765 | TB70
(M= 12)
34.32
29.34
25.48
721
3576
.783 | T = 35.4
TB80
(M=12)
24.00
20.52
17.82
1031
6185
.189 | | A? NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B4 NA B5 NA | . 1308
1689
1251
0249
0154
-1. 1376
7532
7764
-1. 2308 | .2067
2545
.1858
0306
0154
1.1376 –
.7532
.7764 | 0478
.2578
3122
.2288
0361
0154
1.1376
.7532
.7764
1.2308 | 0346
.2796
3441
.2454
0428
0154
-1.1376
.7532
.7764
-1.2308 | 0253
.3249
4161
.2816
0589
0154
-1.1376
.7532
.7764
-1.2308 | 0201
.4148
5498
.3542
0839
0154
-1.1376
.7532
.7764
-1.2308 | 0165
.5175
7000
.4365
1099
0154
-1.1376
.7532
.7764
-1.2308 | ~.0115
.7283
-1.0085
.6062
1633
0154
~1.1376
.7532
.7764
-1.2309 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 45 51 QHOR: 782 1132 | OTA1 = 3
C1 =0
MAR
57 | 341443
0253 C2
APR MA
62 6
2164 250 | =0981
Y JUN
9 78 | A2 = 283234
C3 =
JUL
83
2713 | | QTA3 = 24
C4 = 2.0210
SEP OCT
76 66
2003 1470 | 42759
C5 =-1.
NOV
56
988 | 3427
DEC
46
676 | | CHINA LAKE, (SOUTH-VERT. VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | CALIFORNIA
TB30
. (M= I2)
NA
NA
NA
6
12
NA
TILT COEF. | TB40
(M=12)
533.27
457.08
397.29
69
168
.415 | TB45
(M=12)
251.86
215.88
187.64
147
388
.563 | (M=12)
147.62
126.53
109.97
250
740
.623 | TB55
(M=12)
98.07
84.06
73.06
377
1245
.640 | | TB65
(M=12)
54.72
46.90
40.77
675
2751
.607 | | .523 | |--|--|---|--|---|---|---|--|---|--| | A3
A4
A5
B1
B2
B3
B4 | NA
AM
AM
AM
AM
AM
AM | 1845
.1672
.0751
.0033
~1.2520
.8178
.7328 | 1945
.1623
.0559
.0033
-1.2520
.8177
.7328 | 2667
.2029
.0440
.0033
-1.2520
.8178
.7328 | 4119
.2865
.0266
.0033
-1.2520
.8178
.7328 | .8178
.7328 | 8139
.5192
0030
.0033
-1.2520
.8178
.7328 | .0020
.9139
-1.0367
.6495
0147
.0033
-1.2520
.8178
.7328
-1.3191 | .0015
1.2853
-1.5131
.9221
0553
.0033
-1.2520
.8177
.7328
-1.3191 | | TOTAL ANNUAL TOUE SOUTH AN AZIMUTH AND MONTH: TAVE: QHOR: | TRANSPITTED
ND VERTICAL
TILT COEF.
JAN FEB
45 50
891 1294 | QTA1
C1 =
MAR
58 | = 374583
.0013
APR
60
2256 | -1.3191
C2 =2062
MAY JUN
74 85
2561 2756 | | | | | DEC
43
845 | | DAGGETT, CAL SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | IFORNIA
TB30
. (M= 1)
NA
NA
NA
NA | TB40
(M= 1)
839.32
717.93
623.86
44
101
.254 | T845
(M=12)
364.59
312.32
271.43
99
252
.403 | TB50
(M=12)
202.64
173.58
150.86
178
516 | ELEVATION
TB55
(M=12)
127.15
108.92
94.66
284
950
.594 | N = 1929
TB60
(M=12)
87.64
75.08
65.25
412
1585
.614 | TB65
(M=12)
64.97
55.66
48.37
556
2405
.606 | TB70
(M=12)
51.10
43.77
38.04
706
3393
.585 | AT = 34.9
TB80
(M=12)
35.53
30.43
26.45
1016
5846
.532 | | A2
A3
A4
A5
B1
B2
B3
B4
B5 | NA
NA
NA
NA
NA
NA
NA | 1497
.0656
1418
0435
-1.0655
-1.7320
.8468
-1.3303 | 0672
.2110
1611
.1736
.0299
.0357
-1.2292
.7950
.7594
-1.3151 | 0570
.2690
2437
.2105
.0205
.0357
-1.2292
.7950
.7594 | 0527
.3782
3919
.2884
.0041
.0357
-1.2292
.7950
.7594
-1.3151 | 0535
.5443
6124
.4111
0196
.0357
-1.2292
.7950
.7593
-1.3151 | 0552
.7275
8547
.5466
0446
.0357
-1.2292
.7950
.7594
-1.3151 | 0572
.9238
-1,1177
.6934
0742
.0357
-1.2292
.7950
.7594
-1.3152 | 0616
1.3754
-1.7359
1.0351
1496
.0357
-1.2292
.7950
.7594
-1.3151 | | AZIMUYH AND
MONTH: | ND VERTICAL | QTA1
C1 ±
MAR
57 | .0145 | . QT
C2 =1935
MAY JUN
73 79
2617 2748 | A2 = 3121;
C3 = JUL
89
2640 | AUG
85 | QTA3 = 2
C4 = 1.9615
SEP OCT
79 66
2017 1518 | NOV
56 | | | SOUTH-VERT
VT1/DD
VT2/DD
VT3/DD
VT3/DD
MONTHLY DD
ANNUAL DD
PARAMETER A | TB30
. (M= 1)
NA
NA
NA
O
O
NA | TB40
(M±12)
NA
NA
NA
NA
1
2 | 7845
(M= 1)
2671.76
2282.38
1982.91
14
31
,420 | TB50
{M= 1}
746.45
637.67
554.00
49
153
.517 | ELEVATION
TBS5
(M= 1)
313.87
268.13
232.95
116
482
.492 | N = 381
1860
(M=12)
163.00
139.47
121.19
209
1149
.386 | 1865
(M=12)
102.14
87.40
75.94
334
2196 | TB70
(M= 5)
67.15
54.20
45.82
309
3558
.433 | AT = 33.7
TBB0
(M= 5)
35.15
28.38
23.99
590
6800
.504 | | AZ IMUTH AND
A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | HA
NA
HA
HA
HA
HA
HA
NA | NA
NA
NA
NA
NA
NA
NA
NA
NA | .0084
0292
.0238
0157
.0026
0283
-1.1296
.6766
.8880
-1.3301 | .0014
.2419
2939
.1729
0041
0283
-1.1297
.6766
.8880
-1.3301 | 0204
.8524
-1.0814
.6095
0482
0283
-1.1297
.6766
.8880
-1.3301 | 0941
1.9676
-2.4043
1.4083
0817
0182
-1.1864
.7583
.8051
-1.3046 |
1435
2.8167
-3.4833
2.0324
1285
-0182
-1.1864
.7583
.8052
-1.3046 | .2893
-4.8995
6.5202
-3.4731
.2575
2783
.8918
-1.8295
3.0757
-1.0375 | .2266
-3.7764
4.9481
-2.5977
.0945
\$.2783
.8918
-1.8295
3.0756
-1.0374 | | TOTAL ANNUAL DUE SOUTH A AZIMUTH AND MONTH: TAVE: | ND VERTICAL | 07A1
61 = | = 337351
1197
APR | 01
C2 = ~.3156
MAY JUN | 7A2 = 2809
C3 =
JUL | 94
3884
AUG | QTA3 = 2
C4 = 1.8600
SEP OCT | 41414
C5 ≂-1
NOV | . 2915
DEC | | FRESNO, CALIF | TB30
. (M≃12) | TB40
(M=12) | TB45
(M≈12) | 1850
(M±12) | ELEVATION
TB55
(M=12) | T860
(M=12) | TB65
(M≈12) | TB70
(M=12) | AT = 36.8
IB80
(M=12) | |---|--|--|---|--|--|--|---|---|---| | VT1/DD
VT2/DD
VT3/DO
MONTHLY DD
ANNUAL DD
PARAMETER A | NA
NA
NA
I
2 | 324.60
277.06
240.56
60
127
.650 | 144.13
123.03
106.82
136
343
.715 | 79.68
68.01
59.05
246
741
.787 | 50.41
43.03
37.36
389
1356
.868 | 36.24
30.93
26.86
540
2171
.919 | 28.17
24.04
20.88
695
3172
.953 | 23.03
19.66
17.07
850
4343
.976 | 16.88
14.41
12.51
1160
7116
.990 | | AZIMUTH AND
A1
A2
A3
A4
A5
B1
B2
B3
B4 | NA
NA
NA
NA
NA
NA
NA | .0087
.0873
0645
0645
0086
0540
-1.0399
.6858
.7490 | .0094
.0868
0692
.1015
0141
0540
-1.0399
.6858
.7489 | .0125
.1062
1052
.1246
0265
0540
-I.0399
.6858
.7489 | .0160
.1427
1646
.1595
0451
0540
-1.0399
.6858
.7489 | .0193
.1933
2431
.2060
0540
-1.0399
.6858
.7489 | .0217
.2477
3266
.2547
0847
0540
-1.0399
.6858
.7489 | .0235
.3031
4122
.3037
1048
0540
-1.0399
.6858
.7489 | .0265
.4279
6067
.4155
1519
0540
-1.0399
.6858
.7489 | | TAVE: | RANSMITTED
ND VERTICAL | QTA1
C1 ±
MAR
55 | -1.1593
= 332506
0296
APR
59
2116 | -1.1593
Q1
C2 =0510
MAY JUN
68 76
2502 2720 | -1.1593
FA2 = 27552
C3 = -
JUL
81
2708 | -1.1593
26
7110
AUG
78 | -1,1592
QTA3 = 2
C4 = 2.0150
SEP OCT
72 63
2024 1455 | -1.1593 | -1.1593 | | LOS ANGELES, SOUTH-VERT. VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | TB30
(M= 1)
NA
NA
NA
O
O
NA | TB40
(M=12)
NA
NA
NA
I
I
NA | TB45
(M=12)
NA
NA
NA
6
7 | TB50
(M=12)
1366.86
1169.57
1016.27
25
45 | ELEVATION
TB55
(M=12)
452.04
386.79
336.09
74
240
.632 | I = 105
T860
(M=12)
198.15
169.55
147.33
169
818
.418 | TB65
(M= 3)
113.84
94.86
81.68
288
1851
.359 | TB70
(M= 4)
75.26
61.11
51.78
328
3300
.350 | AT = 33.9
TB80
(M= 5)
38.84
31.33
26.48
539
6793 | | 'A1
A2
A3
A4
A5
B1
B2
B3
B4
R5 | NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | .7501
.7940 | .0198
.6147
6587
.4473
.0088
0325
-1.1809
.7502
.7940
-1.2992 | .0119
1.5103
-1.7128
1.0934
0122
0325
-1.1809
.7501
.7940
-1.2991 | .1719
-1.1159
1.0635
7835
0926
1130
4665
2104
1.7020 | .0110
-3.8450
4.9619
-2.7267
.2816
1048
.2276
-1.1320
2.4436
-1.3456 | .3939
-5.6262
7.5059
-4.0269
.3383
2943
.9025
-1.8509
3.0884
-1.0532 | | TAVE: | ID VERTICAL | RADIATION
QTA1
C1 =
MAR
55
1642 | = 334081
1143
APR
59
1909 | C2 =3072
MAY JUN
62 64
2133 2127 | A2 = 27837
C3 = -
JUL
67
2294 | .3894
AUG
69 | QTA3 = 2
C4 = 1.8284
SEP OCT
67 63
1761 1305 | 39221
C5 =-1.
NOV
59
998 | .2782
DEC
56
853 | | MOUNT SHASTA, SOUTH-VERT. VT1/DD VT2/DB VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | TB30
(M= 1)
668.00
571.01
495.97
33
70
.426 | T840
(M= 1)
99.18
84.78
73.63
224
656
.768 | TB45
(M= 1)
60.06
51.34
44.60
370
1299
.802 | TB50
(M= 1)
42.37
36.22
31.46
524
2170 | ELEVATION
TB55
(M= 1)
32.70
27.96
24.28
679
3216
.774 | 3586
7860
(M= 1)
26.63
22.76
19.77
834
4434
.769 | TB65
(M= 1)
22.45
19.19
16.67
989
5809
.767 | TB70
(M= 1)
19.41
16.59
14.41
1.144
7314
.758 | AT = 41.3
TB80
(M= 1)
15.27
13.06
11.34
1454
10627 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | 1112
.1134
0914
.1142
.0008
.0318
-1.0813
.7077
.6799
-1.2063 | 0575
.0471
0670
.0667
0210
.0318
-1.0813
.7076
.6799 | 0635
.1120
1606
.1265
0293
.0318
-1.0813
.7076
.6799
-1.2063 | .7076
.6799 | 0772
.3133
3956
.2796
0487
0318
-1.0813
.7077
.6799
-1.2063 | 0786
.4013
5130
.3527
0655
.0318
-1.0813
.7076
.6799
-1.2062 | 0786
.4897
6366
.4285
0874
.0318
-1.0813
.7077
.6799
-1.2063 | 0789
.5867
1741
.5129
1133
.0318
-1.0813
.7076
.6799
-1.2063 | 0817
.8038
-1.0829
.7043
1727
.0318
-1.0813
.7076
.6799
-1.2063 | | TAVE: | D VERTICAL | f A T Q | = 322519
0114
APR
46
1779 | 0T
C2 ±2205
MAY JUN
55 63
2199 2481 | A2 = 26821
C3 = -
JUL
71
2602 | . 4899
AUG
68 | OTA3 = 23
C4 = 1.7953
SEP OCT
63 49
1786 1168 | 30094
C5 =-1.
NDV
42
599 | | | OAKLAND, CALIFORNIA TB30 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA ONNHLL DD O ANNUAL DD O PARAMETER A NA AZIMUTH AND TILT COEF. | TB40
(M= 1)
NA
NA
NA
NA
6 | TB45
(M≈ 1)
645.B4
551.56
479.02
37
60
.600 | TB50
(M= 1)
215.94
184.41
160.16
110
245
.814 | ELEVATION
TB55
(M= 1)
105.21
89.85
78.03
225
741
.899 | N = 7
TB60
(M= 1)
64.07
54.71
47.52
369
1734
.874 | TB65
(M= 1)
45.17
38.58
33.51
524
3215
.819 | TB70
(M= 1)
34.86
29.77
25.85
679
4918
.713 | T = 37.7
TB80
(M= 1)
23.93
20.43
17.75
989
8520
.539 | |---|--|---|--|---|---|--|--|---| | A NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B3 NA B4 NA B5 NA TOTAL ANNUAL TRANSMITTED | NA
NA
NA
NA
NA
NA
NA
NA
RADIATION | .0460
0969
.0582
0317
0471
0825
-1.0789
.6893
.7903
-1.2231 | .0508
0516
.0116
.0032
0468
0825
-1.0789
.6893
.7903 | .0608
.1326
2093
.1438
0612
0825
-1.0789
.6893
.7903
-1.2231 | .0654
.3982
5709
.3651
1164
0825
-1.0789
.6893
.7903
-1.2231 | .0636
.7052
-1.0103
.6348
1981
0825
-1.0789
.6893
.7903
-1.2231 | .0662
1.0686
-1.5190
.9531
2833
0825
-1.0789
.6893
.7903
-1.2231 | .0763
1.7529
-2.4389
1.5387
4070
0825
-1.0789
.6893
.7903
-1.2231 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 48 52 QHOR: 665 1002 | QTA1 =
C1 = -
MAR
52 | = 313023
1003
APR
54
1974 | 01
C2 = ~.2861
MAY JUN
58 60
2209 2348 | FA2 = 26025
C3 = -
JUL
61
2286 | | QTA3 = 2
C4 = 1.8449
SEP OCT
63 60
1679 1190 | 23289
C5 ≂-1.2
NOV
54
786 | 2944
DEC
49
643 | | POINT MUGU, CALIFORNIA TB30 SOUTH-VERT. (M= 1) VTI/OD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD D ANNUAL DD O PARAMETER A NA AZIMUTH AND TILT COEF. | TB40
(M=12)
NA
NA
NA
1
3 | TB45
(M=12)
2549,57
2182.62
1896.71
13
38
.460 | TB50
(%=12)
724.92
620.59
539.29
47
177
.545 | ELEVATION
T855
(M= 3)
311.54
259.10
222.84
103
524
.515 | TB60
(M=
3)
151.88
126.32
108.64
210
1237
.528 | TB65
(Mm 3)
91.56
76.15
65.49
349
2430
.433 | TB70 (M= 5) 56.68 45.72 38.63 363 4006 .527 | T ≈ 34.1
TB80
(M≈ 5)
30.58
24.67
20.85
673
7568
.537 | | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B4 NA B4 NA | NA
NA
NA
NA
NA
NA
NA
NA | 0272
.8697
9472
.5661
.0532
0063
-1.2047
.7735
.7851
-1.3111 | 0206
.9373
-1.0368
.6139
.0449
0063
-1.2047
.7734
.7852
-1.3111 | 0268
-1.4775
1.6150
8885
1395
0121
3867
3150
1.7196
-1.3741 | 0484
9736
.9862
5502
1396
0121
3867
3150
1.7195 | 0983
6432
5316
3051
1566
0121
3867
3150
1.7196
-1.3741 | .1294
-3.8500
5.1133
-2.5533
-0839
-1801
.9472
-1.9257
3.0157
-1.0416 | .0973
-3.5354
4.6610
-2.2981
.0249
1801
.9472
-1.9258
3.0158
-1.0416 | | TOTAL ANNUAL TRANSMITTED FOR THE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 54 54 QHOR: 918 1224 | | 330564
- 0993
APR
57
2028 | 07
C2 =3222
MAY JUN
58 61
2074 2033 | A2 = 27561
C3 = -
JUL
64
2206 | .3542
AUG
65 | QTA3 = 2
C4 = 1.7759
SEP OCT
65 62
1601 1291 | C5 =-1.2
NOV
57 | 2672
DEC
55
849 | | RED BLUFF, CALIFORNIA TB30 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD 5 ANNUAL DD 5 ARMETER A NA AZIMUTH AND TILT COEF. | TB40
(M= 1)
264.27
226.03
196.33
81
137 | TB45
(M= 1)
132.71
113.51
98.59
162
378
.767 | TB50
(M= 1)
78.03
66.74
57.97
276
817
.762 | ELEVATION
TB55
(Mm 1)
52.77
45.13
39.20
408
1455
.740 | = 354
TB60
(M= 1)
39.12
33.46
29.07
550
2277 | TB65
(M= 1)
30.75
26.30
22.84
700
3277
.749 | TB70
(M=12)
24.81
21.24
18.46
802
4453
.790 | = 40.2
TB80
(M=12)
17.89
15.32
13.31
1112
7254
.837 | | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B3 NA B4 NA | 0037
0101
0038
0076
0103
0352
-1.1386
.7692
.7118
-1.2027 | 0036
.0288
0567
.0229
0186
0352
-1.1386
.7691
.7119
-1.2027 | 0006
.1144
1550
.0885
0236
0352
-1.1386
.7691
.7118 | .0022
.2131
2718
.1630
0303
0352
-1.1386
.7691
.7119
-1.2027 | .0049
.3027
3845
.2321
0409
0352
-1.1386
.7691
.7119
-1.2027 | .0073
.3803
4869
.2932
0535
0352
-1.1386
.7691
.7118
-1.2027 | .0304
.5203
6155
.4201
0482
0456
-1.1735
.8157
.6443
-1.1953 | .0314
.6258
7831
.5110
0877
0456
-1.1736
.8157
.6443
-1.1953 | | TOTAL ANNUAL TRANSMILLED FOR SOUTH AND VERTICAL AZIMUTH AND VILT COEF. MONTH: JAN FEB TAVE: 42 49 QHOR: 569 866 | | 3288 88
-0210
APR
51
1953 | QT
C2 =1954
MAY JUN
67 77
2338 2542 | AZ = 27331
C3 = -
JUL
82
2686 | .5323
AUG
80 | QTA3 = 2.
C4 = 1.8505
SEP OCT
73 63
1855 1251 | C5 =-1.3
NOV
_51 | 437
DEC
44
492 | | SAN DIEGO CA TMY TB30 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD O ANNUAL DD O PARAMETER A NA AZIMUTH AND TILT COEF. | TB40
(M= 1)
NA
NA
NA
O
O
NA | (M=12)
NA
NA
NA
NA
2
3 | TB50 (M= 1) 1949 .55 1663 .20 1444 .62 17 31 .376 | ELEVATION
T855
(M= 1)
549.07
468.42
406.86
60
159
.601 | TDEA | TB65
(M= 1)
112.92
96.34
83.68
291
1460
.458 | TB70
(M= 1)
74.14
63.25
54.94
444
2826
.385 | = 32.7
TB80
(M= 5)
38.34
31.00
26.25
514
6281
.434 | |---|---|--|--|---|---|---|---|---| | A2 NA
A3 NA
A4 NA
A5 NA
B1 NA
B2 NA
B3 NA
B4 NA
B5 NA | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | 0673
0863
0473
0570
0177
-1.0743
-6272
-9253 | 0284
.1497
2366
.1568
0625
0177
-1.0743
.6272
.9253
-1.3064 | 0757
.6549
8528
.5436
0944
0177
-1.0743
.6272
.9253
-1.3064 | 1202
1.2936
-1.6906
1.0312
1497
0177
-1.0743
.6272
.9253
-1.3064 | 1734
2.0243
-2.6346
1.5700
1789
0177
-1.0743
.6272
.9253
-1.3064 | .0947
-4.3534
5.7182
-2.9249
.0932
2223
.8596
+1.7581
3.0159
-1.0003 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF, MONTH: JAN FEB TAVE: 55 57 QHOR: 959 1280 | QTA1 :
C1 = -
MAR | 1403
APR | OT
C2 =3271
MAY JUN
63 64
1996 2003 | JUL | .3550
AUG
70 | QTA3 = 23
C4 = 1.8486
SEP OCT
70 66
1694 1385 | 33615
C5 =~1.2
NOV
61
1064 | 2694
DEC
57
B82 | | SAN FRANCISCO, CALIFORNI TB30 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD O ANNUAL DD O PARAMETER A NA AZIMUTH AND TILT COEF. | A
TB40
(M= 1)
NA
NA
NA
11 | TB45
(M= 1)
566.75
484.11
420.45
43
90
.681 | TB50
(M= 1)
212.87
181.83
157.92
114
331
.829 | ELEVATION
TB55
(M= 1)
107.91
92.17
80.05
226
982
.864 | TDEA | TB65
(M= 1)
47.18
40.30
35.00
516
3703
.710 | TB70
(M= 1)
36.29
31.00
26.92
671
5395
.611 | T = 37.6
TB80
(M= })
24.82
21.20
18.41
981
8974
.469 | | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B4 NA B5 NA | NA
NA
NA
NA
NA
NA
NA
NA | .0208
0630
.0241
0185
0362
0665
-1.0915
.6990
.7935
-1.2317 | .0266
.0949
1636
.1003
0465
0665
-1.0915
.6990
.7935 | .0344
.3746
5456
.3322
1050
0665
-1.0915
.6990
.7935
-1.2317 | .0399
.6838
9905
.6044
1907
0665
-1.0915
.6990
.7935
-1.2317 | .0453
1.0556
-1.5160
.9296
2829
0665
-1.0915
.6990
.7936 | .0506
1.4418
-2.0471
1.2611
3633
0665
-1.0915
.6990
.7935
-1.2317 | .0612
2.1527
-2.9991
1.8615
4863
0665
-1.0915
.6990
.7935
-1.2317 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 48 51 QHOR: 679 1077 | QTA1
C1 =
MAR
51 | = 325986
0768
APR
54
1946 | 01
C2 =2904
MAY JUN
55 58
2249 2440 | TA2 = 27108
C3 = -
JUL
60
2427 | 37
- 4324
AUG
61
2098 | QTA3 = 2
C4 = 1.8576
SEP OCT
62 S9
1777 1225 | 32596
C5 =-1.:
NOV
53
B94 | 3182
DEC
48
616 | | SANTA MARIA, CALIFORNIA TB30 SOUTH-VERT. (M= 1) VT1/0D NA T2/0D NA VT3/0D NA VT3/0D NA MONTHLY DD 2 ANNUAL DD 3 PARAMETER A NA AZIMUTH AND TILT COEF. | TB40
(M= 1)
820.17
700.70
608.65
38
72
.515 | TB45
(M= 1)
400.35
342.04
297.10
77
192
.720 | TB50
(M= 1)
226.71
193.69
168.24
136
467 | ELEVATION
TB55
(M= 1)
134.32
114.75
99.68
230
1113
.720 | N = 236
TB60
(M= 1)
86.50
73.90
64.19
358
2253
.579 | TB65
(M= 1)
61.48
52.53
45.62
503
3700
.418 | TB70
(M= 6)
46.38
37.38
31.63
407
5350
.400 | T = 34.9
TB80
(M= 6)
26.73
21.54
18.23
707
8902
.474 | | A1 NA
A2 NA
A3 NA
A4 NA
A5 NA
B1 NA
B2 NA
B3 NA
B4 NA
B5 NA | 0179
.0126
0614
.0187
0316
0144
-1.1221
.7156
.8408
 | 0090
.1430
1998
.1182
0275
0144
-1.1221
.7156
.8408
-1.2918 | 0114
.3660
4958
.2939
0584
0144
-1.1221
.7156
.8408
-1.2919 | 0246
.8201
-1.1367
.6663
1494
0144
-1.1221
.7156
.8408
-1.2919 | 0583
1.5203
-2.0997
1.2372
2658
0144
-1.1221
.7156
.8408
-1.2918 | 1078
2.4448
-3.3200
1.9705
3709
0144
-1.1221
.7156
.8408
-1.2918 | .1208
-6.1518
8.6883
-5.0303
.9835
2136
1.3694
-2.4938
3.7916
9217 | .0882
-4.8643
6.8033
-3.9337
.6931
2136
1.3695
-2.4940
3.7917
9219 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 48 5 QHOR: 843 110 | OTA1
C1 =
B MAR
1 52 | = 325546
1077
APR
54
1920 | 0
C2 =2901
MAY JUN
56 56
2044 2394 | JUL
60 | 53
4187
AUG
60
2109 | QTA3 = 2
C4 = 1.8874
SEP OCT
60 58
1689 1366 | 232533
C5 ==1.
NOV
55
958 | 3046
DEC
51
802 | | SUNNYVALE, C
SOUTH-VERT
VT 1/OD
VT2/DD
VT3/DD
MONTHLY DD
ANNUAL DD
PARAMETER A
AZIMUTH AND | TB30 . (M= 1) NA NA NA O O NA | TB40
(M=12)
NA
NA
NA
NA
11
18 | TB45
(M=12)
614.36
525.69
456.68
40
97 | TB50
(M=12)
270.05
231.07
200.74
91
323
.717 | ELEVATIO
TB55
(M=12)
130.86
111.97
97.27
188
831
.647 | N =
39
TB60
(M=12)
75.13
64.29
55.85
327
1730
.697 | TB65
(M=12)
51.26
43.87
38.11
479
3034
.717 | TB70
(M=12)
38.74
33.15
28.80
634
4612
.665 | T = 37.4
TB80
(M=12)
26.02
22.27
19.34
944
8136
.521 | |--|--|--|--|---|---|---|--|--|--| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | NA
NA
NA
NA
NA
NA
NA | AM
AM
AM
AM
AM
AM
AM
AM
AM
AM | .0289
.1509
1590
.1083
.0035
0381
-1.1628
.7857
.7158
-1.2246 | .0473
.3921
-,4318
.2843
-0011
0381
-1.1628
.7858
.7158 | .0523
.6099
7034
.4529
0237
0381
-1.1628
.7858
.7158
-1.2246 | .0407
.7058
8637
.5465
0688
0381
-1.1628
.7858
.7158
-1.2246 | .0295
.8955
-1.1592
.7231
1405
0381
-1.1628
.7858
.7158
-1.2246 | .0213
1.2265
-1.6368
1.0138
2308
0381
-1.1628
.7858
.7158
-1.2246 | .0096
2.0052
-2.6912
1.6668
3768
0381
-1.1628
.7858
.7158
-1.2246 | | TOTAL ANNUAL DUE SOUTH AS AZIMUTH AND MONTH: TAVE: QHOR: | ND VERTICAL | QTA1
Cl =
MAR
53 | = 323128
0780
APR
57
1896 | C2 =2648
MAY JUN
59 64
2301 2433 | FA2 = 2685
C3 =
JUL
64
2447 | 67
4592
AUG
65
2197 | QTA3 = 2
C4 = 1.8779
SEP OCT
63 61
1751 1239 | 30386
C5 =-1.
NOV
53
844 | 3070
DEC
49
634 | | COLORADO SPR SOUTH-VERT VT 1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A | TB30
(M= 1)
293.83
251.68
218.74
147
459
.494 | TB40
(M= 1)
123.39
105.69
91.86
350
1414 | TB45
(M= 1)
91.14
78.06
67.85
474
2097 | TB50
(M= 2)
71.04
60.39
52.39
522
2932
.309 | ELEVATION
T855
(M= 2)
56.98
48.44
42.02
651
3934
.314 | N = 6171
TB60
(M= 2)
47.23
40.15
34.83
786
5097 | TB65
(M= 3)
40.59
33.90
29.19
901
6440
.326 | TB70
(M= 3)
34.63
28.92
24.91
1056
7936
.340 | T = 38.8
TB80
(M= 4)
26.82
21.88
18.60
1013
11244
.336 | | AZIMUTH AND
A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | .0451
.6498
~.6326
.4195
.1149
0269
-1.1664
.7373
.6658
-1.3518 | .0870
1.1919
-1.2172
.7798
.1680
0269
-1.1664
.7373
.6659
-1.3519 | .1031
1.4119
-1.4723
.9304
.1755
0269
-1.1665
.7373
.6659
-1.3518 | .0304
.0613
4395
.0530
1988
0129
9266
.4096
.9832
-1.4009 | .0412
.2634
6783
.2072
2061
0129
9266
.4096
.9832
-1.4009 | .0528
.4796
9405
.3749
2180
0129
9266
.4096
.9832
-1,4009 | .1015
-2.0843
1.9826
9970
3976
0223
3737
2979
1.5143
-1.4664 | .1119
-1.7046
1.5413
7300
3962
0223
3737
2979
1.5143
-1.4664 | 3218
-5.0829
6.2182
-3.2101
0474
.1189
.3681
-1.2709
2.3201
-1.4699 | | TOTAL ANNUAL TO DUE SOUTH AN AZIMUTH AND MONTH: TAVE: QHOR: | VD VERTICAL | OTA1
Cl =
MAR
35 | = 389705
.0510
APR
46
1956 | Q1
C2 = ~.3640
MAY JUN
55 65
2146 2344 | TAZ = 32574
C3 = -
JUL
70
2177 | 47
3178
AUG
69
2022 | QTA3 = 20
C4 = 1.6205
SEP OCT
62 52
1779 1389 | 3011)
C5 =-1.
NOV
37
972 | 3902
DEC
33
760 | | DENVER, COLOR SOUTH-VERT, VT1/OD VT2/OD VT3/OD MONTHLY DO ANNUAL DO PARAMETER A AZIMUTH AND | T830
(M= 1)
213.04
182.55
158.67
193
568
.492 | TB40
(M= 1)
103.97
89.10
77.44
396
1510 | TB45 (M= 1) 78.45 67.42 58.43 525 2209 .417 | TB50
(M= 2)
61.97
52.68
45.70
545
3059
.418 | ELEVATION
T855
(M= 2)
49.91
42.43
36.80
677
4059
.430 | N = 5331
TB60
(M= 2)
41.50
35.28
30.60
814
5223 | TB65
(M= 2)
35.41
30.11
26.11
954
6542
.438 | TB70
(M= 2)
30.88
26.25
22.77
1094
8004
.430 | T = 39.8
TB80
(M= 2)
24.58
20.90
18.13
1374
11262
.375 | | A1
A2
A3
A4
A5
B1
B2
B3
B4 | .0459
.4113
-3861
.2766
.0877
0366
-1,1883
.756
.6544
-1,3439 | .0864
.6545
6345
.4408
.1158
0366
-1.1883
.7562
.6544
-1.3440 | .1028
.7883
7878
.5374
.1152
0366
-1.1883
.7562
.6545
-1.3440 | .0336
~.3182
.0130
~.0971
~.2401
~.0178
~.9252
.4242
.9707
~1.3722 | .0438
1620
1582
.0126
2361
0178
9253
.4242
.9707
-1.3722 | .0536
.0157
3669
.1428
2414
0178
9253
.4242
.9707
-1.3722 | .0634
.2016
5935
.2821
2522
0178
9252
.4242
.9707
-1.3722 | .0741
.4021
8479
.4364
2705
0178
9253
.4243
.9707
-1.3722 | .1059
.9085
-1.5254
.8402
3389
0178
9252
.4242
.9706
-1.3721 | | TOTAL ANNUAL I DUE SOUTH AN AZIMUTH AND MONTH: TAVE: QHOR: | ID VERTICAL | | = 386992
.0505
APR
48
1910 | C2 =3776
MAY JUN
57 64
2206 2345 | A2 = 32345
C3 = -
JUL
72
2325 | 3051
AUG
70 | QTA3 = 27
C4 = 1.6205
SEP OCT
62 49
1777 1339 | /8106
C5 =-1.
NOV
38
881 | 3879
DEC
30
744 | ``` EAGLE, COLORADO ELEVATION = 6512 LAT = 39.7 TB30 TR40 TB45 TB50 TB55 T860 TB65 TB70 TRAO SOUTH-VERT. (M= 1) (M= 1) 43.30 (M=12) (M= 1) 36.08 (M= 1) 27.06 (M=1) (M= 1) (M= 1) (M=1) VT1/00 53.69 30.92 24.05 21.64 18.03 VT2/DD 78.81 46.07 37.06 30.88 26.47 23.16 20.58 18.52 15.43 VT3/DD 68.48 40.05 32.20 20.12 26.83 23.00 17.88 16.09 13.41 364 670 MONTHLY DD 929 1084 1239 1394 1549 1859 ANNUAL DD 1251 2666 3622 4729 5976 7352 8839 10421 13824 PARAMETER A .509 .569 .586 .598 .603 .597 .579 .479 AZIMUTH AND TILT COEF. -.0472 -.0398 A٦ .0118 -.0367 -.0340 -.0315 -.0293 -.0230 .0595 .605B -.7497 .7273 .3750 . 4863 .7437 .9075 1,1031 1.5882 A3 -.0928 -.6846 -.4486 -.5912 -.9359 -1.1580 -1.4214 -2.0628 A4 . 1643 .4138 .3826 .4663 .5587 .6682 .B007 .9597 1.3530 A5 -.0451 . 1136 -.0425 -.0543 -.0710 -.0930 -. 1204 -.1513 -.2165 Bl .0385 .0385 .0182 .0385 .0385 .0385 .0385 .0385 .0385 B2 -1.1306 -1.2569 ~1.1306 .7257 -1,1306 .7258 -1.1306 -1.1306 -1.1306 -1.1306 -1.1306 B3 .7257 .8581 .7257 .7258 .7257 .7257 B4 .6679 6679 5936 .6679 6679 .6679 5679 .6679 B5 -1.3018 -1.3062 ~1.3018 -1.3018 -1.3018 -1.3018 -1.3019 -1.3018 -1.3019 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL 373103 QTA1 QTA2 C2 = -.3201 £ 311455 QTA3 = 267655 C3 = -.3715 JUL AUG AZIMUTH AND TILT COEF. ĈÌ = .0727 C4 = 1.6770 C5 =-1. 3689 FEB 22 MONTH: JAN MAR APR MAY JUN SEP OCT 42 NOV DEC 20 744 TAVE: 42 51 65 54 54 31 914 18 OHOR: 1120 1479 2004 2269 2510 2334 2115 1761 1296 705 GRAND JUNCTION, COLORADO ELEVATION = 4839 LAT = 39.1 TB30 TB40 TB45 TB50 TB55 TB60 TB65 T870 TB80 (M= 1) 164.23 SOUTH-VERT. (M= 1) 69.32 (M= 1) 52.97 (M= 1) 42.81 (M= 1) 24,22 (M=1) (M=1) (M=1) (M=1) VT 1/DD 35.92 30.94 27.17 19.90 VT2/DD 140.54 59.31 45.33 36.63 30.74 26.48 23.25 20,73 17.03 VT3/00 122.11 211 470 26.71 963 20.20 51.54 39.38 31.83 23.00 18.01 14,80 MONTHLY DD 499 653 ROR 1118 1273 142B 1738 1397 ANNUAL DD 2076 2890 3820 4870 6040 7347 10373 PARAMETER A .650 .703 .693 .677 . 657 .639 .624 .614 AZIMUTH AND TILT COEF. .0341 .0203 .3765 -.4315 A1 .0241 .0222 .0210 .0197 .0194 .0193 .0207 ~.0233 . 1090 .2797 -.3182 .1897 .4788 .5827 .6881 -.0155 -.5543 -. 1330 -.2169 -.6834 -.8198 -1.1589 .3951 A4 .0350 . 1221 .1795 .2452 .3176 .4757 .5593 .7641 A5 -.0385 -.0080 -.0140 -.0077 -.0063 -.0208 -.0125 -.0341 -.0819 B١ .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 B2 -1,1306 -1.1306 -1,1306 -1.1306 -1.1306 -1.1306 -1.1306 -1.1306 -1.1306 .7119 вэ .7119 .7119 .7119 .7119 .7119 .7119 .7119 .7119 B4 6905 .6905 6905 6905 .6905 6905 6904 -6905 .6905 B5 -1.3112 -1.3112 -1.3112 -1.3112 -1.3112 -1.3112 -1.3111 -1.3112 -1.3112 TOTAL ANNUAL TRANSMITTED RADIATION OTA1 DUE SOUTH AND VERTICAL 374957 QTA3 = 268426 C2 = AZIMUTH AND TILT COEF. 0234 - 4211 C4 = 1.7365 CS =-1.3783 APR MONTH: MAR MAY JUN JUL SEP FEB AUG NOV OCT DEC TAVE: 23 39 50 76 52 63 12 79 66 39 29 777 QHOR: 1103 1523 1959 2397 2582 2508 2199 1821 1328 924 731 PUEBLO, COLORADO ELEVATION = 4721 LAT = 38.3 TB30 TB40 TB45 TB50 TBS5 TB70 TB60 TB65 TB80 (Mz 1) 169.14 SOUTH-VERT. (M= 1) 88.77 (M= 1) 69.00 (M= 1) 55.80 (M= 1) 34.51 (%= 1) (M± 1) 24.74 (%≃ 1) (M=1) VT1/00 30.50 26.11 46.50 39.70 VT2/DD 47.78 144.83 76.01 59.08 39.82 33.99 29.54 21.19 66.06 458 VT3/DD 125.86 51.35 41.52 34.60 25.68 22.69 18.41 MONTHLY OD 240 589 729 875 1025 1179 1334 1644 2755 ANNUAL DD 1449 640 2035 3614 4613 5774 7107 10155 PARAMETER A .583 .584 .578 .565 .555 .541 .528 .512 AZIMUTH AND TILT COEF. .0746 .0650 .0702 .0800 .0852 A1 .0914 .0972 . 1042 .5422 .6583 -.7010 .7484 A2 .5405 .5883 .8646 . 9954 1.1564 1.6634 -.6136 .3935 A3 -.5582 -.5657 -.9641 .5997 -.8157 -1. 1345
-1.3470 -2.0126 A4 .3591 .3645 .4452 5124 .7001 .8259 1.2240 A5 .0590 .0559 .0611 .0600 .0486 .0383 .0235 .0025 -.0619 BÌ -.0262 -.0262 -.0262 -.0262 -.0262 -.0262 .0262 -.0262 -.0262 -1.1626 -1.1626 B2 -1.1626 -1.1626 -1.1626 -1.1626 -1.1626 -1.1626 -1, 1626 .7258 83 .7257 .7257 .7258 .7257 . 1258 .1257 . 1257 .7250 .6979 84 .6979 _6979 6979 6979 6979 .6979 .6979 .6979 85 -1.3490 -1.3490 -1.3491 -1.3490 -1.3491 -1.3490 -1.3491 -1.3491 -1.3490 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAT 0TA2 .3342 JUN OTAT 383915 320503 QTA3 = 275441 AZIMUTH AND TILT COEF. C2 = May -0563 APR C3 = -.3646 £ 1.6799 C5 # 3866 FĚB MAR MONTH: JUL AUG SEP OCT NOV DEC 26 34 38 TAVE: 50 62 71 75 23 12 42 34 1174 869 1612 1939 OHOR: 2225 2502 2068 1742 1383 960 800 ``` | HARTFORD, CONNECTICUT TB30 TB40 SOUTH-VERT. (M=12) (M=12) VT1/DD 83.09 34.75 VT2/DD 71.01 29.70 VT3/DD 61.67 25.79 MONTHLY DD 156 373 ANNUAL DD 591 1549 | TB45
(M=12)
25.39
21.70
18.84
510
2262 | TB50
(M=12)
19.73
16.87
14.65
657
3115 | ELEVATION
TB55
(M=12)
16.04
13.71
11.90
808
4106 | = 180
TB60
(M=12)
13.48
11.52
10.01
961
5232 | T865
(M=12)
11.61
9.92
8.62
1116
6506 | TB70
(M=12)
10.20
8.72
7.57
1270
7927 | T = 41.9
TB80
(M=12)
8.20
7.01
6.08
1580 | |---|--|--|--|--|---|--|---| | PARAMETER A .446 .636 AZIMUTH AND TILT COEF. A106550366 A2 .3403 .3318 A339753769 A4 .3665 .3033 A509670480 B1 .0019 .0019 B2 -1.0835 -1.0835 B3 .7642 .7642 | .693
0297
.3456
3877
.2995
0351
.0019
-1.0835
.7642 | .7530239 .35183955 .29570293019 -1.0835 | .8070196 .36224118 .29940289 .0019 -1.0835 | .851
0163
.3783
4362
.3098
0312
.0019
-1.0835
.7642 | .8880138 .39654639 .32300349 .0019 -1.0835 .7642 | .9210119 .41724958 .33920400 .0019 -1.0835 .7642 | .9610089 .48135911 .39110554 .0019 -1.0835 | | 84 .6338 .6337
85 -1.1120 -1.1119
TOTAL ANNUAL TRANSMITTED RADIATIO
DUE SOUTH AND VERTICAL QTI
AZIMUTH AND TILT COEF. C1
MONTH: JAN FEB MAR
TAVE: 25 27 35
QHOR: 492 784 997 | DN
11 = 236215
= .0092 | QT/
2 =3189
AY JUN
58 69 | .6337
-1.1120
A2 = 197248
C3 =
JUL
73
1717 | .2118
AUG
70 | .6337
-1.1119
QTA3 = 16
C4 = 1.5188
SEP OCT
62 51
148 863 | .6337
-1.1120
69727
C5 =-1.
NOV
41
493 | .6337
-1.1119
1223
DEC
29
355 | | WILMINGTON, DELAWARE TB30 SOUTH-VERT. (M= 1) VT)/DD 163.17 62.45 VT2/DD 139.44 53.37 VT3/DD 121.11 46.35 MONTHLY DD 134 350 ANNUAL DD 257 PARAMETER A .549 .626 | T845
(M≈ 1)
44.50
38.03
33.03
492
1493
.630 | TB50
(M= 1)
34.07
29.11
25.28
642
2239
.616 | ELEVATION
TB55
(M= 1)
27.50
23.50
20.41
796
3105
.601 | = 79
TB60
(M= 1)
23.01
19.67
17.08
951
4094
.594 | TB65
(M= 1)
19.79
16.91
14.69
1106
5211
.592 | TB70
(M= 1)
17.36
14.83
12.88
1261
6493
.598 | T = 39.7
TB80
(M= 1)
13.93
11.91
10.34
1571
9608
.618 | | AZIMUTH AND TILT COEF. A1 .0637 .0655 A2 .2411 .2384 A321152263 A4 .1557 .1572 A5 .0393 .0323 B103610361 B2 -1.0858 -1.0858 B3 .7083 .7083 B4 .7220 .7220 | .7083
.7220 | .7083
.7220 | .0816
.4830
5101
.3281
.0367
0361
-1.0858
.7083
.7220 | .0835
.5687
6162
.3904
.0329
0361
-1.0858
.7083
.7221 | .0838
.6546
7253
.4538
.0272
0361
-1.0858
.7083
.7220 | .0818
.7323
8271
.5125
.0198
0361
-1.0858
.7083
.7220 | .0758
.8826
-1.0367
.6343
0064
0361
-1.0858
.7083 | | B5 -1.2076 -1.2075 TOTAL ANNUAL TRANSMITTED RADIATIC DUE SOUTH AND VERTICAL QTO AZIMUTH AND TILT COEF. C1 MONTH: JAN FEB MAN TAVE: 29 32 44 QHOR: 585 829 1113 | ON
A1 = 264220
=0050 C:
R APR M
2 52 | 01/
2 =3291
AY JUN
60 71 | -1.2076
A2 = 22047;
C3 = -
JUL
75
1860 | . 2455
AUG
74 | -1.2076
QTA3 = 18
C4 = 1.5886
SEP DCT
67 57
335 1012 | -1.2075
39602
C5 ≃-1.
NOV
45
635 | -1.2075
1719
DEC
36
499 | | MASHINGTON, D.C. SOUTH-VERI, (M= 1) (M= 1) VII/DD 160.14 68.86 VIZ/DD 136.84 58.84 VI3/DD 118.84 51.10 MONTHLY DD 144 334 ANNUAL DD 264 994 PARAMETER A .560 .594 | TB45
(M= 1)
49.64
42.42
36.84
464
1430
.557 | T850
(M= 1)
37.84
32.33
28.08
608
2113
.539 | ELEVATION TB55 (M= 1) 30.41 25.98 22.56 757 2930 .536 | = 289
TB60
(M= 1)
25.31
21.63
18.79
909
3887
.541 | TB65
(Mm 1)
21.63
18.48
16.05
1064
5004 | T870
(M=12)
18.81
16.09
13.98
1026
6284
.569 | T = 38.9
TB80
(M=12)
14.44
12.35
10.73
1336
9372
.627 | | AZIMUTH AND FILT COEF. A105750929 A2 .2861 .3463 A325923434 A4 .1695 .2093 A5 .0611 .0613 A1 .0543 .0543 B2 -1.0893 -1.0893 B3 .7192 .7192 B4 .7408 .7408 B5 -1.2365 -1.2364 | 1106
.4192
4274
.2544
.0682
.0543
-1.0893
.7192
.7409
-1.2364 | 1209
.4987
5212
.3055
.0720
.0543
-1.0893
.7192
.7408
-1.2364 | 1247
.5733
6154
.3570
.0699
.0543
-1.0893
.7192
.7408
-1.2364 | 1247
.6424
7073
.4080
.0636
.0543
-1.0893
.7193
.7408
-1.2364 | 1222
.7086
8000
.4606
.0525
.0543
-1.0893
.7192
.7409 | .0683
.9458
-1.0588
.6562
.0072
0160
-1.1356
.7807
.6713 | .0597
1.0488
-1.2412
.7553
0376
0160
-1.1356
.7807
.6713
-1.2045 | | TOTAL ANNUAL TRANSMITTED RADIATE | ON
A1 = 261459
= .0183 C
R APR M
3 54 | | A2 = 21798
C3 = -
JUL
75
1716 | 7
.2975
AUG
74 | QTA3 = 1
C4 = 1.6289
SEP OCT
69 S6
1313 983 | | | | APALACHICOLA, FLORIDA TB30 TB40 TB30 SOUTH-VERT. (M= 1) (M= 1) VT1/DD NA 1411.91 VT2/DD NA 1200.17 VT3/DD NA 1041.68 MONITHLY DD 1 18 ANNUAL DD 1 37 PARAMETER A NA .718 AZIMUTH AND TILT COEF. A1 NA .0172 A2 NA .1080 A3 NA .1585 A4 NA .1242 A5 NA .0441 | TB45 TB50 (M= 1) (M= 1) 576.32 285.04 489.89 242.29 425.20 210.30 44 89 112 265 .675 .577 .0209 .0280 .0961 .1238 -1627 .2166 .1359 .177606700929 | ELEVATION = 20
TB55 TB60
(M= 1) (M= 1)
160.41 99.62
136.35 84.68
118.35 73.50
157 253
524 932
.520 .515
.0331 .0337
.1694 .2265
-2894 -3687
.2243 .2667
.11291218 | (M= 1)
66.60
56.61
49.13
379
1534
.531
.0327
.2944
-4569
.3127
~1257 | LAT = 29.7
TB70 TB80
(M= 1) (M= 1)
47.90 30.18
40.72 25.66
35.34 22.27
527 836
2342 4620
.545 .577
.0317 .0281
.3931 .6608
5908975
.3837 .5839
13671796 | |--|---|--|---|--| | B1 NA0320 B2 NA9322 B3 NA .5253 B4 NA 1.0234 B5 NA -1.2507 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAL AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 53 52 60 QHOR: 863 1182 1458 | 03200320
93229322
.5253 .5253
1.0235 1.0234
-1.2507 -1.2507
= 283099 (0.0103 C2 =1231
APR MAY JUN
69 74 81
1979 2134 1910 | N JUL AUG
D 8] 81 | 0320
9322
.5253
1.0234
-1.2507
QTA3 = 20
C4 = 1.9163
SEP OCT
79 69
1556 1443 | 03200320
93229322
.5253 .5253
1.0234 1.0234
-1.2506 -1.2506
02310
C5 =-1.1730
NOV DEC
59 55
1047 832 | | DAYTONA BEACH, FLORIDA TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD NA 1490.07 VT2/DD NA 1267.19 VT3/DD NA 1100.12 MONTHLY DD D 18 ANNUAL DD 0 26 PARAMETER A NA .302 AZIMUTH AND TILT CDEF. A1 NA .0254 A2 NA .4324 | TB45 TB50 (M= 1) (M= 1) 620.98 323.74 528.09 275.31 458.47 239.02 44 85 65 15) .461 .623 .0154 .0161 .2414 .2090 | ELEVATION = 39
TB55 TB60
(M= 1) (M= 1)
194.83 124.31
165.69 105.72
143.85 91.78
141 221
298 570
.726 .772
.0193 .0271
.2146 .2546 | (M= 1)
83.85
71.31
61.91
328
1009
.744 | LAT = 29.2
TB70 TB80
(M= 1) (M= 1)
59.83 36.13
50.88 30.73
44.17 26.68
460 761
1652 4003
.689 .671 | | A3 NA5186 A4 NA .2360 A5 NA .0376 B1 NA0360 B2 NA9655 B3 NA .5374 B4 NA 1.0469 BS NA -1.2670 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. C1 = | 29192558
.1321 .1143
.0201
.0170
03600360
96559655
.5374 .5374
1.0469 1.0469
-1.2670 -1.2670
= 278952
.0313 C2 =175 | 26713248
.1211 .1519
.0131 .0063
03600360
96559655
.5374 .5374
1.0469 1.0469
-1.2670 -1.2671
OTA2 = 232386
4 | .3439
4477
2139
0018
0360
9655
.5375
1.0469
-1.2670
QTA3 = 19 | .4634 .80076121 -1.0874 .2968 .5275011903580360036096559655 .5375 .5375 1.0469 1.0469 -1.2670 -1.2670 | | MONTH: JAN FEB MAR
TAVE: 55 58 64
QHOR: 939 1198 1605 | APR MAY JU
69 74 7
1891 1931 179 | 7 79 79
0 1755 1674 | SEP OCT
78 71
1465 1284 | NDV DEC
64 62
1039 873 | | JACKSONVILLE, FLORIDA TB30 TB40 SQUTH-VERT. (M= 1) (M= 1) VT1/DD NA 642.69 VT2/DD NA 546.75 VT3/DD NA 474.64 MONTHLY DD 3 40 ANNUAL DD 3 85 PARAMETER A NA .696 AZIMUTH AND TILT COEF. | TB45 TB50 (M= 1) (M= 1) 325.39 197.17 276.81 167.74 240.30 145.61 80 131 187 354 .633 .581 | ELEVATION = 30
TB55 TB60
(M= 1) (M= 1)
127.07 85.11
108.10 72.41
93.84 62.86
204 304
615 1004
.572 .566 | T865
(M= 1)
60.47
51.45
44.66
428
1561 | LAT = 30.5
TB70 | | A1 NA .0220 A2 NA .0050 A3 NA0069 A4 NA .0191 A5 NA0117 B1 NA0449 B2 NA9591 B3 NA .5433 B4 NA .9989 B5 NA -1.2353 TOTAL ANNUAL TRANSMITTED RADIATION | .0244 .0283
.0560 .1153
06871413
.0498 .0899
01080125
04490449
95919591
.5433 .5433
.9989 .9989
-1.2352 -1.2352 | .0310 .0325
.1761 .2457
-2161 -3042
.1326 .1817
01510190
04490449
95919591
.5433 .5433
.9989 .9989
-1.2353 -1.2352 | .0350
.3166
3952
.2333
0244
0449
9591
.5433
.9989
-1.2352 | .0388 .0439
.4075 .6487
-51838680
.3015 .4779
03590694
04490449
95919591
.5433 .5433
.9989 .9989
-1.2352 -1.2352 | | | = 274221
.0087 | N JUL AUG
8 79 80 | QTA3 = 19
C4 = 1.7977
SEP OCT
77 68
1402 1223 | 06299
C5 =-1.0939
MOV DEC
60 54
949 803 | | VT2/DD NA VT3/DD NA MDNTHLY DD 0 ANNIAL DD 0 PARAMETER A NA | NA
NA
NA
1
1 | NA
NA
NA
3
5 | NA
NA
11
21
NA | 1061.19
901.70
782.79
29
59
,365 | TB60
(M=12)
506.2B
430.18
373.46
60
133
.361 | | TR YA | = 25.8
TB80
(M=12)
74.62
63.40
55.04
407
2067
.526 | |---|---|---|---|---|---|---|---|--| | AT NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B5 NA | DEM | | A4
NA
A4
A4
A4
A4
NA
NA | .0769
.3697
4200
.3209
.0169
.0022
9100
.4721
1.0518
-1.2849 | -1.2850 | 4192
.3202
.0031
.0022
9100
.4721
1.0518
-1.2850 | .4267
5374
.3748
0285
.0022
9100
.4721
1.0518
-1.2849 | 1.1039
-1.4634
.8415
0623
.0022
9100
.4721
1.0518
+1.2850 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 67 69 QHOR: 1044 1343 | QTA1 =
C1 =
MAR
72
1592 | 276305
.0626
APR
74
1902 | C2 =1094
MAY JUN
77 80
1794 1674 | TA2 = 23002
C3 = -
JUL
B0
1748 | | | | | | ORLANDO, FLORIDA T030 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD 0 ANNUAL DD 0 PARAMETER A NA AZYMITH AND TILT COFF. | TB40
(M= 1)
NA
NA
NA
NA | TB45
(M= 1)
1806.72
1535.75
1333.20
16
27
.326 | TB50
(M= 1)
671.66
570.93
495.63
43
80
.532 | ELEVATION
TB55
(M= 1)
331.06
281.41
244.29
88
193
.564 | = 118
 TB60
 (M= })
 184.24
 356.61
 135.96
 158
 413
 .60} | TB65
(M= 1)
114.47
97.30
84.47
255
796
.586 | TB70
(M= 1)
77.53
65.91
57.21
376
1389
.578 | T = 28.5
TB80
(M= 1)
43.76
37.19
32.29
666
3507
.592 | | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B5 NA | NA
NA
NA
NA
NA
NA
NA
NA | 0422
1503
.1215
0797
0371
0095
9462
.5087
1.0621
-1.2665 | 0235
0388
.0094
0108
0251
0095
9462
.5087
1.0621
-1.2665 | | 0171
.1238
1931
.1015
0315
0095
9462
.5087
1.0621
-1.2665 | 0127
.2616
3739
.1986
0419
0095
9462 | 0075
.4394
6134
.3221
0558
0095
9462
,5087
1.0621
-1.2665 | .0061
.8579
-1.1863
.5972
0700
0095
9462
.5087
1.0621
-1.2665 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEI TAVE: 58 6: QHOR: 1008 1266 | RADIATION
OTA1:
C1 =
3 MAR
3 67
0 1575 | = 283403
.0304
.APR
.70
1913 | 0
C2 =1557
MAY JUN
76 79
2013 1812 | TA2 = 23619
C3 = -
JUL
BO
1793 | 98
45 14
AUG
80
1670 | QTA3 = 2
C4 = 1.7975
SEP OCT
78 74
1478 1333 | 03267
C5 =-1.
NOV
68
1125 | 0778
DEC
59
910 | | TALLAHASSEE, FLORIDA TB30 SOUTH-VERT. (M= 1) VT 1/00 NA VT2/00 NA VT3/00 NA VT3/00 NA MONTHLY DD 14 ANNUAL 00 23 PARAMETER A NA | T840
(M= 1)
466.66
396.65
344.27
53
143
.489 | TB45
(M±12)
268.80
228.99
198.82
92
295
.505 | TB50
(M= 1)
168.71
143.40
124.46
148
523
.491 | ELEVATION
TB55
(M= 1)
109.67
93.22
80.91
227
855
.495 | # 69
TB60
(M= 1)
75.66
64.31
55.82
329
1323
.502 | TB65 (M= 1) 55.17 46.90 40.70 452 1958 | TB70
(M= 1)
42.08
35.77
31.05
592
2793
.509 | T = 30.4
TBB0
(M= 1)
27.73
23.57
20.46
899
5287
.575 | | AZIMUTH AND TILT COEF. AI NA AZ NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B3 NA B4 NA B4 NA | 0051
0311
0086
.0147
0360
0156
9258
.5201
1.0203
-1.2241 | .0238
.4239
4813
.3008
0086
0232
-1.0062
.9328
-1.2195 | .0031
.2265
3248
.2020
0480
0156
9258
.5201
1.0203
-1.2241 | .0055
.2833
~.3938
.2436
~.0507
~.0156
~.9258
.5201
1.0202
~1.2240 | .0069
.3266
4498
.2745
0539
0156
9258
.5201
1.0202
-1.2240 | .0085
.3919
5400
.3220
0617
0156
9258
.5201
1.0202
-1.2240 | .0112
.4908
6798
.3941
0745
0156
9258
.5201
1.0202
-1.2243 | .0175
.7255
-1.0078
.5547
0911
0156
9258
.5201
1.0202
-1.2240 | | TOTAL ANNUAL TRANSMITTED OUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 51 S QHOR: 870 117 | QTA1
Cl =
B MAR
1 60 | = 273514
.0137
APR
67
1822 | C2 ≈1726
MAY JUN
72 77
1901 1890 | 1 JUL
19 | 49
4304
AUG
78
1731 | QTA3 = C4 = 1.7838 SEP OCT 77 69 1488 1251 | C5 =-1
NOV
57 | .0852
DEC
51
799 | | TAMPA, FLORIDA TB30 SOUTH-VERT. (M= 1) VT1/DD VT2/DD NA VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND TILT COEF. AI | TB40 TB45 (M= 1) (M= 1) NA 1695,93 NA 1442.03 NA 1252.05 6 18 9 36 NA .380 NA .0093 | TB50
(M= 1)
745.93
634.26
550.70
41
101
.374 | ELEVATION : | = 10
7860
(M= 2)
222.07
186.61
161.42
107
474
.409 | TB65
(M= 2)
123.74
103.98
89.94
192
874
.522 | TB70
(M= 2)
78.63
66.07
57.15
302
1477
.560 | AT = 28.0
T880
(M= 2)
41.98
35.28
30.52
565
3612
.615 | |--|--|--|---|--|--|--|---| | A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B4 NA B5 NA B4 NA B5 NA TOTAL ANDUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. | NA .2798
NA -3233
NA .1218
NA .0624
NA .0069
NA -9751
NA .5195
NA 1.0868
NA -1.3087 | .3060
3553
.1309
.0707
.0069
9751
.5195
1.0868
-1.3087 | .4095
~.4921
.2010
.0650
.0069
~.9751
.5194
1.0868 | 9739
1.0076
4284
2264
.0455
6072
.0769
1.4135
-1.2636 | 6250
.6090
2435
1820
.0456
6072
.0769
1.4135
-1.2637 | 4347
.3754
1293
1723
.0456
6072
.0769
1.4135
-1.2637 | 0315
1320
.1042
1439
.0456
6072
.0769
1.4135
-1.2637 | | MONTH: JAN FEB
TAVE: 59 59
QHOR: 1042 1190 | MAR APR
66 69 | MAY JUN
76 79
2006 1859 | 30L
80 | AUG
81 | SEP OCT
79 72
1522 1343 | NOV
66
1135 | DEC
60
956 | | WEST PALM BEACH, FLORIDA TB30 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA
WONTHLY DD O ANNUAL DD O PARAMETER A NA | TB40 TB45 (M= 1) (M= 1) NA NA NA NA NA NA O | TB50 (M= 1) NA NA NA 1 1 1 12 | ELEVATION :
TB55
(M= 1)
1183.58
1004.30
871.62
23
44
.317 | = 20
T860
(M= 1)
521.58
442.57
384.11
52
123
.681 | TB65 {M= 1) 271.07 230.01 199.63 99 281 .705 | T870
(M= 1)
150.92
128.06
111.14
178
600
.645 | AT = 26.7
TBBO
(M= 1)
60.51
51.35
44.56
445
2293
.609 | | AZIMUTH AND TILT COEF. A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B4 NA B5 NA | NA N | NA
NA
NA
NA
NA
NA
NA
NA | .0696
.4888
5920
.3119
.0189
.0246
8754
.4202
1.1149
-1.2570 | .0304
.2190
2749
.1525
0043
.0246
8754
.4201
1.1149
-1.2571 | .0268
.2672
3485
.1957
0182
.0246
8754
.4202
1.1149
-1.2570 | .0249
.3972
5200
.2902
0272
.0246
8754
.4202
1.1149
-1.2570 | .0159
.7796
-1.0409
.5517
0401
.0246
8754
.4201
1.1149
-1.2570 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 65 67 QHOR: 982 1207 | QTA1 = 263327
C1 = .0552
MAR APR
70 74 | 0
C2 =0987
MAY JUN
78 80
1844 1732 | TA2 = 219275
C3 = ~
JUL
81
1734 | | QTA3 = 18
C4 = 1.8292
SEP OC1
80 76
1394 1269 | C5 =-1.
NOV
72
1067 | .0233
DEC
68
962 | | ATLANTA, GEORGIA TB30 SOUTH-VERT. (M= 1) VT1/DD 1037.30 VT2/DD 883.06 VT3/DD 766.54 MONTHLY DD 21 ANNUAL DD 50 PARAMETER A . 753 | TB40 TB45
(M= 1) (M= 1)
187.47 108.15
159.60 92.07
138.54 79.92
119 205
332 639
.664 .619 | (M= 1)
69.67
59.31
51.48
319
1079 | ELEVATION
TB55
(M= 1)
48.80
41.55
36.06
455
1657
.593 | = 1033
TB60
(M= 1)
36.80
31.32
27.19
604
2392
.615 | T865
(M= 1)
29.31
24.95
21.66
758
3310
.640 | TB70
(M= 1)
24.33
20.72
17.98
913
4417
.662 | AT = 33.7
T880
(M= 1)
18.17
15.46
13.42
1223
7333
.107 | | AZIMUTH AND TILT COEF. A10277 A20196 A30011 A4 .0313 A50358 B1 .0279 B29408 B3 .5415 B4 .8948 B5 -1.2264 | 04270526
.0507 .1143
08171598
.0942 .1591
03930460
.0279 .0279
94089408
.5415 .5415
.8948 .8948
-1.2264 -1.2264 | . 1934
2549
.2155
0510
.0279
9408
.5415 | 0658
.2395
3099
.2521
0530
.0279
9408
.5415
.8948
-1.2263 | 0663
.2720
3510
.2783
0567
.0279
9408
.5415
.8948
~1.2264 | 0654
.3166
4136
.3166
0665
.0279
9408
.5415
.8948
-1.2264 | 0639
.3783
5029
.3694
0813
.0279
9408
.5415
.8948
-1.2264 | 0588
.5625
1756
.5203
1128
.0279
9408
.5415
.8948
-1.2264 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 40 43 QHOR; 695 93 | QTA1 = 270595
C1 =0107
B MAR APR
S 50 63 | 0
C2 =1937
MAY JUN
68 73
1979 1890 | JUL
76 | | QTA3 = 1
C4 = 1.7889
SEP OCT
72 61
1347 1254 | 93508
C5 =-1
NOV
51
887 | .1/50
DEC
43
690 | | SOUTH-VERT. (M= 2) (M
VT1/DD 1219.46 25
VT2/DD 1031.33 21
VT3/DD 893.78 18 | TB40 TB45 M= 2) (M= 2) 58.96 153.70 19.01 129.99 89.90 112.65 92 156 314 576 .537 .494 | TB50
(M= 1)
96.80
82.36
71.48
228
952
.519 | ELEVATION = 148
1855 | (M= 1)
36.59
31.13
27.02
604
2938 | LAT = 33.4
1B70 | |---|--|---|---|--|---| | A1 .0451
A23724
A3 .3742
A42790
A50332
B10274
B27643
B3 .2692
B4 1.1842 1.
B5 -1.2892 -1. | .0551 .0642
.37924009
.3769 .3959
.27382852
.04030455
.02740274
.76437643
.2692 .2692
.1842 1.1842
.2892 -1.2892 | .0048
.1998
3552
.3061
1537
0049
9219
.5415
.9094
-1.2045 | .0060 .0065
.2157 .2419
-3680 -3977
.3084 .3227
14551423
00490049
92199219
.5415 .5415
.9094 .9094
-1.2045 -1.2045 | .5414
.9094 | .0065 .0063
.3343 .5177
-5181 -7723
.3872 .5203
14691657
00490049
92199218
.5415 .5415
.9094 .9094
-1.2045 -1.2045 | | TOTAL ANNUAL TRANSMITTED RAI
DUE SOUTH AND VERTICAL
AZIMUTH AND TILT COEF,
MONTH: JAN FEB
TAVE: 45 45
QHOR: 718 1001 | OTA1 = 273830
C1 =0019
MAR APR
52 64
1342 1665 | QT
C2 =2310
MAY JUN
71 76
1916 1894 | A2 = 228165
C3 =3800
JUL AUG
78 78
1814 1666 | QTA3 = 19
C4 = 1.7315
SEP OCT
72 61
1376 1223 | 06198
C5 ±-1.1513
NOV DEC
53 47
924 704 | | SOUTH-VERT. (M= 1) (F
VT1/DD 1530.47 26
VT2/DD 1302.74 27
VT3/DD 1130.89 19
MONTHLY DD 15
ANNUAL DD 26
PARAMETER A .601 | TB40 TB45
M= 1) (M= 1)
68.68 146.34
28.70 124.56
98.53 108.13
83 152
208 430
.717 .744 | TB50
(M= 1)
90.98
77.44
67.23
245
775
.732 | ELEVATION = 361
TB55 TB60
(M= 1) (M= 1)
62.38 45.52
53.10 38.75
46.09 33.64
357 489
1244 1859
.734 .756 | T865
(M= 1)
35.02
29.81
25.88
636
2643 | TB70 TB80 (M= 1) (M= 1) 28.17 20.23 23.98 17.22 20.82 14.95 790 1100 3624 6303 .771 .787 | | A2 .0816
A31120 -
A4 .0833
A50193 -
B1 .0095
B29561 -
B3 .5511
B4 .9340
B5 -1.2484 -1 | .02540269
.0617 .0646
.09901081
.0820 .0894
.03190380
.0095 .0095
.95619561
.5511
.9340 .9340
.2484 -1.2484 | 0297
.0930
1491
.1151
0445
.0095
9561
.5511
.9339
-1.2484 | 03120310
.1384 .1815
21022671
.1501 .1821
04960534
.0095 .0095
95619561
.5511 .5511
.9339 .9339
-1.2484 -1.2484 | .2347
3373
.2229
0587
.0095
9561
.5511
.9340 | 03110291
.3032 .4617
42986819
.2766 .4163
06720949
.0095 .0095
95619561
.5512 .5512
.9339 .9339
-1.2484 -1.2484 | | TOTAL ANNUAL TRANSMITTED RAI
DUE SOUTH AND TILT COEF.
AZIMUTH AND TILT COEF.
MONTH: JAN FEB
TAVE: 44 48
QHOR: 705 1009 | OTA1 = 275785
C1 =0105
MAR APR
56 64
1369 1806 | C2 =1984
MAY JUN
72 78
1900 1966 | TA2 = 229589
C3 =4385
JUL AUG
79 78
1788 1731 | QTA3 = 19
C4 = 1.7788
SEP OCT
73 63
1435 1231 | 07331
C5 =-1.1625
NOV DEC
53 48
936 760 | | VT1/DD NA 40
VT2/DD NA 4 | TB40 TB45
M= 1) (M= 1)
64.15 240.02
12.35 204.43
58.03 177.50
49 98
155 328
.624 .597 | TB50
(M= 1)
144.15
122.77
106.60
163
599
.556 | ELEVATION = 52
TBS5 TB60
(M= 1) (M= 1)
93.22 64.37
79.40 54.77
68.94 47.56
253 366
995 1530
.536 .546 | (M= 1)
47.45
40.41
35.09
497
2227 | TB70 TB80 (M= 1) (M= 1) 36.64 24.73 31.20 21.06 27.09 18.29 643 953 3129 5743 .582 .648 | | A1 NA -
A2 NA -
A3 NA -
A4 NA -
B1 NA -
B2 NA -1
B3 NA
B4 NA -1 | .05990685
.1110 .2023
.20713156
.1232 .1833
.06470613
.0382 .0382
.0090 -1.0090
.5940 .5941
.9683 .9683
.2565 -1.2565 | 0761
.2607
3864
.2258
0622
.0382
-1.0090
.5940
.9682
-1.2564 | 07840753
.3086 .3416
-,44604879
.2603 .2028
06380650
.0382 .0382
-1.0090 -1.0090
.5940 .5941
.9683 .9682
-1.2564 -1.2564 | .3928
5560
.3178
0683
.0382
-1.0090
.5940
.9682 | 06650526
.46796842
65749571
.3689 .5178
07350905
.0382 .0382
-1.0090 -1.0090
.5940 .5940
.9683 .9682
-1.2565 -1.2564 | | TOTAL ANNUAL TRANSMITTED RAI DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 49 49 QHOR: 758 1069 | OTA1 = 271750
C1 = .0341
MAR APR
57 65
1421 1789 | 07
C2 =2492
MAY JUN
71 77
1815 1873 | TA2 = 226572
C3 =3775
JUL AUG
78 79
1683 1610 | QTA3 = 1
C4 = 1.7564
SEP OCT
75 67
1322 1219 | 94916
C5 =-1.1460
NDV DEC
56 49
917 796 | | BOISE, IDAHO SOUTH-VERY. VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | .670 | 60.78 | T845
(M=12)
46.61
39.95
34.72
424
1651
.755 | TR50
(M=12)
34.19
29.31
25.47
578
2494 | ELEVATION
TB55
(M=12)
26.96
23.11
20.08
733
3503
.810 | = 2867
TB60
(M= 12)
22.25
19.08
16.58
888
4667
.832 | TR65
(M=12)
18.95
16.24
14.11
1043
5981
.855 | TB70
(M=12)
16.50
14.14
12.29
1198
7429
.872 | T = 43.6
TBB0
(M=12)
13.10
11.23
9.76
1508
10631
.881 | |--|--|--|--|---|---|---
---|---|--| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | .0879
.0296
-0761
.0265
-0275
-0377
-1.1587
.7989
.6012
-1.1894 | .7988
.6012
-1.1894 | 0668
.2845
2654
.2212
.0130
.0389
-1.1990
.8424
.5368
-1.1849 | 0623
.3366
3305
.2604
.0075
.0389
-1.1991
.8424
.5368
-1.1849 | 0585
.3934
4036
.3028
.0003
.0389
-1.1991
.8425
.5368
-1.1848 | 0556
.4466
4766
.3436
0097
.0389
-1.1991
.8424
.5368
-1.1848 | 0533
.4960
5489
.3830
0225
.0389
-1.1991
.8425
.5368
-1.1849 | 0517
.5473
6266
.4257
0385
-0389
-1.1990
.8424
.5368
-1.1849 | 0506
.6706
8103
.5297
0759
.0389
-1.1991
.8424
.5368
-1.1849 | | TAVE: | ND VERTICAL | QTA1 =
C1 =
MAR
40 | 336744
,0108
APR
47
1856 | 07
C2 ≃2363
MAY JUN
58 66
2244 2506 | A2 = 28065
C3 = -
JUL
74
2636 | 4488
AUG
72 | QTA3 = 20
C4 = 1.6951
SEP OCT
64 51
1715 1139 | 41023
C5 =-1.
NOV
40
606 | 3457
DEC
31
436 | | LEWISTON, ID. SOUTH-VERT VT1/00 VT2/00 VT3/00 MONTHLY DD ANNUAL DD PARAMETER A | TB30
(M= 1)
108.71
92.80
80.57
117
212
.364 | TB40
(M= 1)
45.15
38.54
33.46
281
774 | TB45
(M= 1)
31.18
26.62
23.11
407
1368
.772 | T850
(Mm12)
22.16
18.97
16.48
492
2175
.812 | TB55
(M-12) | N = 1437
TB60
(M=12)
13.59
11.63
10.10
802
4353
.930 | 9.75
8.47
957
5701 | TB70
(M=12)
9.80
8.39
7.29
1112
7186
1.022 | AT = 46.4
TB80
(M=12)
7.66
6.56
5.70
1422
10452
1.072 | | AZIMUTH AND
A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | -,1240
-,2581
.1930
-,0775
-,1108
.0847
-1,0085
.6987
.6211
-1,0751 | 0182
.0338
0385
.0847
-1.0085
.6986
.6211
-1.0752 | 0774
.0569
0807
.0747
.0286
.0847
-1.0085
.6986
.6211
-1.0752 | .0430
.3668
3433
.1925
.0744
.0139
-1.1317
.8282
.5370
-1.0948 | .0358
.3744
3597
.2064
.0650
.0139
-1.1317
.8282
.5370
-1.0948 | .0304
.3783
3745
.2189
.0535
.0139
-1.1317
.8282
.5370
-1.0948 | .3842
3927
.2326
.0411
.0139
-1.1317
.8282
.5370
-1.0948 | .0239
.3949
4174
.2495
.0282
.0139
-1.1317
.8282
.5370
-1.0948 | .0203
.4328
-4859
.2938
.0023
.0139
-1.1317
.8282
.5370
-1.0948 | | TOTAL ANNUAL DUE SOUTH A AZIMUTH AND MONTH: TAVE: QHOR: | ND VERTICAL
TILT COEF.
JAN FEE
32 39
361 619 | QTA1 :
C1 =
MAR | = 263355
.0142
.0PR
49
1391 | C2 =2602
MAY JUN
59 66
1844 1999 | JUL
75 | 43
3425
AUG
71
1886 | QTA3 = 1
C4 = 1.6196
SEP OCT
61 50
1413 835 | C5 =-1.
NOV | .2342
DEC
34
275 | | POCATELLO, I
SOUTH-VERT
VT1/DD
VT2/DD
VT3/DD
MONTHLY DD
ANNUAL DD
PARAMETER A | TB30 | TB40
(M=12)
45.62
39.08
33.96
447
1740
.728 | TB45
(M=12)
34,04
29,17
25,34
599
2587
.807 | TB50
(M=12)
27.06
23.18
20.14
754
3583
.850 | ELEVATIO
TB55
(M=12)
22.44
19.23
16.71
909
4711
.877 | N = 4478
TB60
(M=12)
19.17
16.43
14.27
1064
5969 | TB65
(M*12)
16.73
14.34
12.46
1219
7352 | TB70
(M=12)
14.85
12.72
11.05
1374
8847
.921 | AT = 42.9
TB80
(M=12)
12.11
10.38
9.02
1684
12104
.918 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
TOTAL ANNUAL | 0312
.0535
0550
0097
.0201
.0135
-1.1576
.7658
.6288
-1.2291 | 0457
.2396
2609
.2009
0238
.0113
-1.1760
.8167
.5532
-1.1885
RADIATION | 0457
.2905
3293
.2356
0302
.0113
-1.1760
.8168
.5532
-1.1885 | 0450
.3464
4020
.2751
0367
.0113
-1.1760
.8168
.5532
-1.1884 | 0439
.4004
4730
.3146
0442
.0113
-1.1760
.8168
.5532
-1.1885 | 0432
.4520
5428
.3533
0530
.0113
-1,1760
.8168
.5532
-1,1885 | .8168
.5532 | 0389
.5536
6868
.4342
0772
.0113
-1.1760
.8167
.5532
-1.1885 | 0367
.6757
8627
.5357
1102
.0113
-1,1760
.8168
.5532
-1.1884 | | DUE SOUTH | AND VERTICAL
TILT COEF.
JAN FE
22 2
575 93 | OTA1
C1 =
8 MAR
9 36 | = 348164
.0048
APR
42
1815 | C2 =2279
MAY JUN
55 63
2249 2423 | i JUL
3 72 | 85
-, 4555
AUG
70
2213 | QTA3 = 1
C4 = 1.6850
SEP OCT
59 47
1758 1196 | C5 =-1
NOV
36 | .3620
DEC
25
458 | | CHICAGO, ILLINOIS T830 SOUTH-VERT. (M= 1) VT1/DD 91.16 VT2/DD 77.92 VT3/DD 67.68 MONTHLY DD 213 ANNUAL DD 624 PARAMETER A 432 AZIMUTH AND TILT COEF. | TB40 TB4
(M=12) (M=12
39.95 29.0
34.18 24.0
29.69 21.0
382 55
1581 220
.546 .6 | (M=12)
6 22.65
6 19.38
0 16.83
5 674
4 3100 | (M=12) (M=
18.51 15
15.84 13
13.76 11
825
4026 5 | 23
B60 T865
12) (M=12)
6.62 13.48
1.37 11.54
1.61 10.02
977 1132
976 6272
768 .809 | TB70 TB80 (M=12) (M=12) 11.86 9.56 10.15 8.18 8.82 7.10 1287 1597 7622 10768 .848 .909 | |--|---|---|---|---|--| | A11014
A2 .3012
A32926
A4 .1937
A5 .0330
B1 .0383
B2 -1.0799
B3 .7087
B4 .6758
B5 -1,1935 | .0649 .058
.5024 .479
5212504
.3547 .331
0056009
0078007
-1.1246 -1.124
.7798 .779
.6070 .600
-1.1578 -1.157 | 9 .4707
45038
6 .3315
40080
80078
6 -1.1246
8 .7798
0 .6070 | .4771 .4
52285
.3382 .3
01300
00780
-1.1246 -1.1 | 798 .7798
6070 .6070 | .0440 .0424
.5128 .5549
59676700
.3761 .4200
03180513
00780078
-1.1246 -1.1246
.7798 .7798
.6070 .6070
-1.1578 -1.1578 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 25 26 QHOR: 503 802 | QTA1 = 26750
C1 = .0413
MAR APR
34 48 | 0 C2 =3014
MAY JUN
60 71
1771 1955 | JUL AUG
75 73 | S SEP OCT
66 55 | 191797
C5 =-1.2171
NOV DEC
42 28
575 383 | | MOLINE, ILLINOIS TB30 SOUTH-VERT. (Mm 1) VT1/DD 60.64 VT2/DD 51.85 VT3/DD 45.04 MONTHLY DD 326 ANNUAL DD 739 PARAMETER A .715 | TB40 TB40 (M= 1) (M= 34.72 27.4 29.68 23.4 25.78 20.5 70 7 1722 24 .733 .75 |) (M= 1)
5 22.83
5 19.52
4 16.96
6 867
1 3208 | (M= 1) (M= 19.38 16.57 14.39 12.1022 1126 5 | 91
860 T865
1) (M= 1)
1.83 14.87
1.39 12.71
1.50 11.04
1.77 1332
182 6381
760 .775 | LAT = 41.4
TB70 TB80
(M= 1) (M= 1)
13.32 11.02
11.39 9.42
9.89 8.18
1487 1797
7735 10897
.792 .812 | | AZIMUTH AND TILT COEF. A10193 A2 .0996 A30898 A4 .0911 A50161 B1 .0093 B2 -1.0890 B3 .7150 B4 .6635 B5 -1.1948 | 010600
.1603 .20
172922
.1403 .17
017201
.0093 .00
-1.0890 -1.08
.7150 .71
.6634 .66
-1.1940 -1.19 | 2 .2445
62652
9 .1963
40122
3 .0093
0 -1.0890
0 .7150
5 .6635 | .2829
-3112
-2226
-0123
.0093
-1.0890 -1.0
-7150
.6634 | 0084 .0127
1248 .3732
16464284
1527 .2889
101500198
1093 .0093
1890 -1.0890
1150 .7151
1635 .6634
1948 -1.1948 | .0164 .0214
.4215 .5381
49326546
.3261 .4208
.002590468
.0093 .0093
-1.0890 -1.0890
.7151 .7151
.6634 .6634
-1.1948 -1.1948 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 22 25 QHOR: 505 811 | OTA1 = 2746
C1 = .0431
MAR APR
36 51 | C2 =3213
MAY JUN
61 71
1712 1984 | JUL AUG
73 72 | SEP OCT
64 53 | 197172
C5 =-1.2057
NOV DEC
40 29
612 481 | | SPRINGFIELD, ILLINOIS | TB40 TB40 (M=12) (M=12) 50.00 35.13 26.4 37.13 26.4 1321 19 .525 .6 |) (M=12)
9 27.51
9 23.52
5 20.43
4 631
7 2635 | (M=12) (M=
22.12 18
18.91 15
16.42 13
785
3487 4 | 114
1860 TB65
12) (M=12)
13.47 15.86
1.79 13.56
1.72 11.77
1095
1479 5605
1.78 805 | TB70 TB80 (M=12) (M=12) 13.89 11.13 11.86 9.52 10.31 8.27 1250 1560 6876 9904 .831 .878 | | A10476
A2 .2249
A32182
A4 .0736
A5 .0773
B1 .0073
B2 -1.1005
B3 .7126
B4 .7132
B5 -1.2330
TOTAL ANNUAL TRANSMITTED | .0472 .03
.2928 .284
3222314
.3150 .295
0837065
0257025
-1.0831 -1.08
.7222 .725
.6481 .644
-1.1647 -1.166 | 5 .2899
13221
16 .2872
2872
30606
370257
-1 -1.0831
2 .7222
1 .6480 | .3043
3438
.2937
05880
02570
-1.0831 -1.0
.7222
.6481 .6 | 0264 .0259
0346 .3738
038624404
03154 .3460
06130666
06130257
0631 -1.0831
07222 .7222
0481 .6481
0648 -1.1648 | .0254 .0246
.4115 .4921
49316122
.3760
.4432
07260918
02570257
-1.0831 -1.0831
.7222 .6481 .6481
-1.1647 -1.1647 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 27 30 QHOR: 596 869 | QTA1 = 27531
C1 =0070
MAR APR
J 42 53 | 7 C2 =2654
MAY JUN
64 73
1768 2085 | JUL AUG
75 75 | SEP OCT
67 55 | 197126
C5 =-1.2278
NOV DEC
41 29
622 452 | | EVANSVILLE, I SOUTH-VERT, VT1/OD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZ IMUTH AND | TB30
(M= 1)
203.65
173.70
150.80
97
249
.403 | (M=12)
69.92
59.71
51.85
245
910
.424 | TB45
{M=12}
46.19
39.44
34.25
370
1453
.505 | TB50
(M=12)
33.84
28.90
25.09
505
2111
.551 | (M=12)
26.43
22.57
19.60
647
2885
.582 | = 387
TB60
(M=12)
21.55
18.40
15.98
793
3784
.617 | T865 | TB70
(M=12) | AT = 38.1
TB80
(M=12)
12.14
10.36
9.00
1408
9052
.777 | |--|---|--|--|---|--|---|---|---|---| | A1
A2
A3
A4
A5
B1
B2
B3 | 1532
.2373
~.2270
.1842
.0435
.0619
9932
.6301
.7635
-1.1885 | 0074
0188
-1.0476
.7056
.7089
-1.1577 | .1117
.4575
5089
.3254
0117
0188
-1.0476
.7056
.7089
-1.1578 | 5278
.3383
0147
0188
-1.0476
.7056
.7089 | .0904
.4858
5531
.3566
0171
0188
-1.0476
.7056
.7089
-1.1578 | .0829
.4944
5677
.3682
0201
0188
-1.0476
.7056
.7089
-1.1578 | .0751
.4967
5785
.3759
0257
0188
-1.0476
.7055
.7089
-1.1578 | .0684
.5104
6068
.3928
0347
0188
-1.0476
.7056
.7089
-1.1577 | .0592
.5808
-,7244
.4619
-,0632
-,0188
-1,0476
.7056
.7089
-1,1578 | | DUE SOUTH AN
AZIMUTH AND | ID VERTICAL TILT COEF. | QTA1 :
Cl =
MAR | .0157 | 07
C2 =2558
MAY JUN
66 74
1744 1925 | JUL
77 | AUG
76 | QTA3 = 1:
C4 = 1.6748
SEP OCT
67 58
1378 1051 | NOV
44 | .1714
DEC
34
481 | | FORT WAYNE, I
SOUTH-VERT.
VT1/DD
VT2/DD
VT3/DO
MONTHLY DD
ANNUAL DD
PARAMETER A | | TB40
(M= 1)
28.15
24.03
20.86
569
1649
.678 | TB45
(M= 1)
22.22
18.96
16.46
721
2341
.643 | TB50
(M= 1)
18.30
15.62
13.56
876
3141
.637 | ELEVATION
T855
(M= 1)
15.55
13.27
11.52
1031
4061
.648 | = 827
T860
(M±12)
12.99
11.08
9.62
877
5121
.719 | TB65
(M=12)
11.06
9.43
8.19
1031
6340
.789 | TB70
(M±12)
9.61
8.20
7.12
1186
7731
.853 | AT = 41.0
TB80
(M=12)
7.62
6.50
5.64
1496
10983 | | B3
B4
B5 | . 1903
1940
.0987
.0375
.0159
-1.0225
.6940
.7182
-1.1325 | .3542
3614
.1851
.0712
.0159
-1.0225
.6940
.7183
-1.1325 | .4222
4328
.2254
.0813
.0159
-1.0224
.6940
.7183
-1.1325 | .4607
4765
.2518
.0831
.0159
-1.0225
.6940
.7183 | 0059
.4836
5076
.2723
.0784
.0159
-1.0225
.6940
.7183
-1.1325 | 0905
.3651
4459
.3279
0679
.0587
9801
.6804
.6881 | 0798
.3654
4407
.3188
0669
.0587
9800
.6804
.6881 | 0712
.3557
4462
.3171
0683
.0587
9801
.6881
-1.0649 | 0601
.3855
4998
.3423
0796
.0587
9800
.6804
.6881 | | TAVE: | D VERTICAL | QTA1 =
C1 =
MAR
34 | 23 1389
.0289
.APR
50
1382 | OT
C2 =2343
MAY JUN
60 70
1668 1849 | JUL
72 | .3114
AUG | QTA3 = 1
C4 = 1.5947
SEP OCT
63 53
1206 899 | C5 = -1.
NOV | | | INDIANAPOLIS, SOUTH-VERT. VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | TB30
(M= 1)
63.94
54.58
47.38
260
538
,658 | TB40
(M= 1)
34.47
29.42
25.54
483
1392
.595 | TB45
(M= 1)
26.94
22.99
19.96
618
2032
.594 | TB50
(M=12)
20.79
17.74
15.40
618
2807 | ELEVATION
TB55
(M=12)
16.64
14.20
12.32
772
3703
.733 | = 807
T860
(M=12)
13.85
11.82
10.26
927
4713
.785 | T865
(%=12)
11.87
10.13
8.79
1082
5867
.833 | 1870
(M=12)
10.38
8.86
7.69
1237
7185
.879 | AT = 39.7
TB80
(M=12)
B.30
7.08
6.15
1547
10338
.956 | | A1
A2
A3
A4
A5
B1
B2
B3
B4 | .0030
.1649
1761
.0659
.0399
.0461
-1.0318
.7009
.7289 | 0109
.3402
3747
.1654
.0569
.0461
-1.0318
.7010
.7288
-1.1383 | 0192
.3958
4396
.2024
.0581
.0461
-1.0318
.7009
.7288
-1.1383 | 0594
.3601
4444
.2564
0330
.0626
-1.0190
.7072
.7038
-1.0975 | 0565
.3538
4398
.2547
0341
.0626
-1.0975
.7039
-1.0975 | 0548
.3576
4484
.2611
0373
.0626
-1.0190
.7072
.7039
-1.0975 | 0532
.3672
4654
.2726
0421
.0626
-1.0190
.7072
.7039
-1.0975 | 0514
.3792
4864
.2866
0484
.0626
-1.0190
.7072
.7038
-1.0975 | 0485
.4219
5568
.3306
0669
.0626
-1.0190
.7072
.7038
-1.0975 | | TAVE: | ID VERTICAL | QTA1 =
C1 =
MAR
39 | = 241904
.0114
APR
51
1371 | C2 =2439
MAY JUN
61 71
1740 1873 | FA2 = 20146
C3 = -
JUL
74
1751 | | QTA3 = 1
C4 = 1,6238
SEP OCT
65 55
1317 1020 | 73135
C5 =-1.
NOV
42
593 | . 1276
DEC
30
385 | | SOUTH BEND, INDIANA TB30 | 21.55
18.39 | ELEVATIO TB50 TB55 1= 1) (M= 1) 17.36 14.53 14.82 12.40 12.86 10.76 794 949 3125 4098 .711 .742 | N = 774
T860
(M= 1)
12.49
10.66
9.25
1104
5206 | T865 (M=12) 10.87 9.28 8.05 1092 6464 .817 | TB70
(M=12)
9.52
8.12
7.05
1247
7884
.872 | = 41.7
TB80
{M=12)
7.62
6.51
5.65
1557
11140
.952 | |---|---|--|--|---|---|---| | A1 .0738 .0722 A2 .1810 .2979 A3 -1739 -3083 A4 .1009 .1790 A5 .0241 .0252 B104060406 B2 -1.0144 -1.0143 B3 .6759 .6759 B4 .6980 .6980 B5 -1.1252 -1.1252 | .3192
3363
.1984
.0209
0406
-1.0143
.6759
.6980 | .0644 .0609
.3376 .3549
.36463927
.2182 .2374
.0135 .0057
.04060406
.0144 -1.0143
.6759 .6758
.6980 .6980
.1252 -1.1252 | .6758
.6980 | .6880
.6565 | .0172
.3545
4473
.3296
0808
0188
-1.0001
.6879
.6566
-1.0797 | .0171
.3873
5069
.3615
0979
0188
-1.0001
.6880
.6566
-1.0797 | | | = 241738
.0146 | JUN JUL
67 72 | | 4 53 | C5 =-1.1
NOV
41 | 821
DEC
29
348 | | BURLINGTON, IOWA TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 68.74 41.05 VT2/DD 58.81 35.12 VT3/DD 51.10 30.51 MONTHLY DD 364 609 ANNUAL DD 661 1635 PARAMETER A .663 .678 AZIMUTH AND TILT COEF. | 33.08
28.30 | T850 T855 4= 1) (M= 1) 27.52 23.52 23.54 20.12 20.45 17.48 909 1063 3129 4035 .626 .617 | N = 702
TB60
(M= 1)
20.53
17.57
15.26
1218
5061
.622 | TB65
(M≈ 1)
18.21
15.58
13.54
1373
6232
.629 | T870
(M= 12)
16. 12
13.81
12.00
1222
7563
.656 | = 40.8
TB80
(M=12)
12.86
11.01
9.57
1532
10707 | | A1 .0216 .0301
A2 .1497 .2271
A313182268
A4 .1051 .1556
A5 .0178 .0207
B103720372
B2 -1.1354 -1.1354
B3 .7479 .7479
B4 .6780 .6780
B5 -1.2367 -1.2367 | .2958
3026 -
.2033
.0240
0372 -
-1.1354 -1
.7479
.6780 | .0362 .0379
.3650 .4254
.3798 -4504
.2524 .2969
.0262 .0253
.03720372
.1354 -1.1354
.7479 .7479
.6780 .6780
.2367 -1.2367 | .7479
.6780 | .7479
.6780 | 0051
.6946
7541
.5454
0230
0176
-1.1674
.7952
.6106 | 0015
.7728
8920
.6143
0549
0176
-1.1674
.7952
.6107
-1.2070 | | | = 295976
0169 | JUN JUE | | 5 54 | CS =-1.2 | 548
DEC
30
462 | | DES MOINES, 10WA T830 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 58.00 35.29 VT2/DD 49.65 30.20 VT3/DD 43.14 26.24 MONTHLY DD 422 694 ANNUAL DD 877 1909 PARAMETER A .637 .678 AZIMUTH AND TILI COEF. | (M= 1) (!
28.94
24.77 | ELEVATIO TB50 TB55 L 1) (M= 1) 24.46 21.18 20.94 18.13 18.19 15.75 1001 1155 3444 4384 .656 .654 | N = 965
TB60
(M=
1)
18.67
15.98
13.89
1310
5453
.660 | TB65
(M= 1)
16.70
14.29
12.42
1465
6678
.674 | TB70
(M= 1)
15.10
12.93
11.23
1621
8067
.688 | # 41.5
TB80
(M=12)
12.46
10.67
9.27
1586
11275 | | A102040287
A2 .1850 .2596
A315992435
A4 .1050 .1590
A5 .0296 .0305
B1 .0285 .0285
B2 -1.1366 -1.1366
B3 .7435 .7435
B4 .6505 .6504
B5 -1.2366 -1.2366 | .3103
2992
.1952
.0334
.0285
-1.1366 -1
.7435
.6505 | .03720390
.3604 .4097
.35564149
.2309 .2669
.0346 .0331
.0285 .0285
.1366 -1.1366
.7435 .7435
.6505 .6505
.2366 -1.2366 | .7435
.6504 | .7435
.6505 | 0365
.5778
6428
.3975
.0085
.0285
-1.1366
.7435
.6504 | .1155
.8209
9987
.5990
0622
0424
-1.1705
.8121
.5962
-1.2003 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAL AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 17 23 36 OHOR: 579 883 1204 | = 294691
.0241 | JUN JUL
70 74 | 3427 C4
AUG SE
72 6 | QTA3 = 21
= 1.6119
P OCT
3 53
2 1034 | 1347
C5 ==1.2
NOV
39
604 | 2661
DEC
28
461 | | MASON CITY, IOWA TB30 TB40 SOUTH-VERT. (M=12) (M=12) VT1/DD 54.27 30.14 VT2/DD 46.52 25.83 VT3/DD 40.43 22.45 MONTHLY DD 351 632 ANNUAL DD 1317 2652 PARAMETER A .440 .603 AZIMUTH AND TILT COEF, | (M=12)
24.22
20.76
18.04
786
3492 | TB50 (M=12) 20.23 17.34 15.07 941 4428 .696 | ELEVATION
TB55
(M= 12)
17.37
14.89
12.94
1096
5473
.732 | = 1224
T860
(M=12)
15.22
13.04
11.34
1251
6635
.764 | TB65
(M=12)
13.54
11.61
10.09
1406
7930
.796 | T870
(M=12)
12.20
10.45
9.09
1561
9372
.826 | T # 43.2
TB80
(M=12)
10.18
8.72
7.58
1871
12651 | |--|--|--|--|---|---|---|--| | A1 .2603 .1875 A2 .5265 .4576 A347924340 A4 .3918 .3439 A5 .0106 .0071 B107530753 B2 -1.1923 -1.1923 B3 .8289 .8289 B4 .5370 .5370 B5 -1.1996 -1.1997 | .8289
.5370
-1.1996 | .8289
.5370 | . 1541
. 4931
- 4982
. 3718
. 0001
0753
-1, 1923
. 8289
. 5370
-1, 1996 | .1466
.5135
5310
.3877
0044
0753
-1.1923
.8289
.5370
-1.1996 | .1395
.5334
5637
.4035
0095
0753
-1.1923
.8289
.5370
-1.1996 | .1332
.5570
6032
.4233
0174
0753
-1.1923
.8289
.5370
-1.1996 | .1256
.6368
7277
.4919
0425
0753
-1.1923
.8289
.5370
-1.1996 | | TOTAL ANNUAL TRANSMITTED RADIATI DUE SOUTH AND VERTICAL QT. AZIMUTH AND TILT COEF. C1 MONTH: JAN FEB MA TAVE: 17 16 2' QHOR: 553 851 123 | 1] = 302928
= .0085 | 2 =3431
AY JUN
57 69 | A2 = 253120
C3 =
JUL
72
2128 | .2704
AUG
69 | QTA3 = 21
C4 = 1.5556
SEP OCT
61 49
1429 986 | 7709
C5 =-1.7
NOV
35
580 | 2773
DEC
19
412 | | SIOUX CITY, IOWA TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 58.26 36.63 VT2/DD 49.91 31.37 VT3/DD 43.37 27.26 MONTHLY DD 458 728 ANNUAL DD 1092 2217 PARAMETER A 471 .508 | TB45
(M= 1)
30.25
25.91
22.52
882
2947
.514 | TB50 (M= 1) 25.73 22.04 19.15 1037 3786 .519 | ELEVATION
TB55
(M= 1)
22.39
19.18
16.66
1192
4736
.526 | = 1102
TB60
(M=12)
19.74
16.92
14.70
1090
5800
.541 | TB65
(M±12)
17.29
14.81
12.87
1244
6992
.587 | TB70
(M=12)
15.37
13.17
11.45
1399
8333
.629 | T = 42.4
TB80
(M=12)
12.5B
10.78
9.37
1709
11462
.690 | | AZIMUTH AND TILT COEF. A106860729 A2 .2755 .4112 A322283673 A4 .1232 .2178 A5 .0781 .0869 B1 .0407 .0407 B2 -1.1690 -1.1689 B3 .7804 .7804 B4 .6123 .6123 B5 -1.2385 -1.2385 | .7804
.6123
-1.2385 | .7804
.6123 | 0855
.6084
5888
.3576
.0917
.0407
-1.1690
.7804
.6123
-1.2385 | .0281
.6822
6573
.5228
.0254
.0031
-1.1748
.8047
.5548
-1.2015 | .0214
.6859
6825
.5266
.0150
.0031
-1.1748
.8047
.5548 | .0159
.7004
7213
.5397
.0025
.0031
-1.1748
.8047
.5548
-1.2016 | .0073
.7812
8620
.6094
0299
.0031
-1.1748
.8046
.5548
-1.2016 | | TOTAL ANNUAL TRANSMITTED RADIATI DUE SOUTH AND VERTICAL OT AZIMUTH AND TILT COEF. CT MONTH: JAN FEB MA TAVE: 16 22 3 QHOR: 600 818 125 | A1 = 304290
=0181 | OT
2 =3391
AY JUN
62 70
06 2131 | A2 = 25414'
C3 = -
JUL
76
2105 | 73 | QTA3 = 2
C4 = 1.5669
SEP OCT
63 53
1281 1060 | 18547
C5 =-1.
NOV
36
624 | 2655
DEC
24
475 | | DODGE CITY, KANSAS T630 SOUTH-VERT. (M≈ 1) (M≈ 1) VT1/DD 177.61 81.93 VT2/DD 151.93 70.06 VT3/DD 132.00 60.89 MONTHLY DD 191 414 ANNUAL DD 424 1254 PARAMETER A 683 .611 AZIMUTH AND TILT COEF. | (M= 1)
61.60
52.69
45.78 | TB50
(M= 1)
48.78
41.73
36.26
695
2580
.541 | ELEVATION
TB55
(M= 1)
40.06
34.26
29.77
847
3419
.522 | = 2582
TB60
(M= 1)
33.86
28.96
25.17
1002
4392
.514 | TB65
(M= 1)
29.32
25.08
21.79
1157
5506
.516 | TB70
(M= 1)
25.86
22.12
19.22
1312
6775
.521 | T = 37.8
TB80
(M= 1)
20.92
17.89
15.54
1622
9773
.512 | | A1 .0843 .1247 A2 .1954 .3275 A323133557 A4 .1678 .2572 A50165 .0007 B107580756 B2 -1.1336 -1.1336 B3 .7171 .7171 B4 .7375 .7375 B5 -1.3058 -1.3058 | .7171
.7375
-1.3058 | .1619
.4896
5297
.3761
.0037
0758
-1.1336
.7171
.7375
-1.3058 | .1741
.5853
6438
.4488
0025
0758
-1.1336
.7171
.7375
-1.3058 | .1799
.6741
7528
.5161
0094
0758
-1.1336
.7171
.7375
-1.3057 | .1799
.7597
8654
.5827
0217
0758
-1.1336
.7171
.7375
-1.3058 | .1773
.8566
9994
.6603
0406
0758
-1.1336
.7171
.7375
-1.3058 | .1767
1.1491
-1.4118
.8983
10758
-1.1336
.7171
.7375
-1.3058 | | TOTAL ANNUAL TRANSMITTED RADIATI DUE SOUTH AND VERTICAL OT AZIMUTH AND TILT COEF, CI MONTH: JAN FEB MA TAVE: 27 34 3 QHOR: 811 1092 148 | A) = 346492
=0282 | 01
2 =2826
IAY JUN
65 75
174 2337 | A2 = 28880
C3 = -
JUL
76
2304 | | QTA3 = 2
C4 = 1.7513
SEP OCT
65 56
1723 1304 | 48071
C5 =-1.
NOV
42
871 | 3575
DEC
32
717 | | GOODLAND, KANSAS | | | | ELEVATION | | | LAT = 39.4 | |--|-----------------------------|---------------------------|----------------------------|-------------------------------|----------------------------|-------------------------------------|---| | 7B30
SOUTH-VERT. (M= 1)
VT3/DD 195.73 | TB40
(M= 1)
90.15 | TB45
(M=12)
66.06 | 7B50
(M=12)
51.37 | TB55
(M=12)
41.91 | 1860
(M=12)
35.40 | 1865
(M=12)
30.63 | TB70 TB80
(M=12) (M=12)
27.00 21.82 | | | 77.24
67.13 | 56.70
49.29 | 44.08
38.33 | 35.97
31.27 | 30.38 | 26.29
22.86 | 23.17 18.73
20.14 16.28 | | MONTHLY DO 192
ANNUAL DO 550 | 416
1546 | 534
2267 | 687
3 123 | 842
4115 | 997
5235 | 1152
64 9 9 | 1307 1617
7915 11090 | | PARAMETER A .573
AZIMUTH AND TILT COEF. | .413 | .422 | .440 | . 444 | .441 | . 436 | .431 .396 | | A1 .0691
A2 .3236
A33610 | | .0220
1.1681
1.0939 | .0283
1.2272
-1.1852 | .0338
1.3399
-1.3388 | .0381
1.4890
-1.5340 | .0407
1.6492
-1.7414 | .0414 .0414
1.8133 2.3129
-1.9598 -2.6086 | | A4 .1662
A5 .0471 | .3979
.0941 | .6662
.1696 | .7197
.1528 | .8107
.1339 | .9266 | 1.0506 | 1.1817 1.5741
.0739 .0084 | | | -1.1933 - | 0228
1.2603 | 0228
-1.2603 | 0228
-1.2603 | 0228
-1.2602 | 0228
-1.2603 | 02280228
-1.2603 -1.2603 | | 83 .7657
84 .6801
85 -1.3260 - | .7657
.6801
-1.3260 - | .8398
.5985
1.3054 | .8398
.5985
-1.3054 | .8398
.5986
-1.3055 | .8398
.5986
-1.3055 | .8398
.5985
-1.3054 | .8398 .8398
.5985 .5985
-1.3054 -1.3054 | | TOTAL ANNUAL TRANSMITTED F
DUE SOUTH AND VERTICAL | | | 01 | A2 = 30199 | | Q7A3 = 25 | | | AZIMUTH AND TILT COEF.
MONTH: JAN FEB | Č1 ≂⊓
MAR | APR | C2 =3623
MAY JUN | JUŁ
C3 = - | AUG | C4 = 1.6668
SEP OCT | C5 =-1.3630
NOV DEC | | TAVE: 27 32
QHOR: 806 1045 | | 48
1913 | 56 69
2086 2343 | 74
2347 | 74
2125 | 63 52
1641 1275 | 37 27
813 693 | | | | | | | | | | | TOPEKA, KANSAS
TB30 | TB40 | TB45 | TB50 | ELEVATION
TB55 | TB60 | TB65 | LAT = 39.1
TB70 TB80 | | SOUTH-YERT. (M= 1)
VT1/DD 117.30
VT2/DD 100.35 | (M= 1)
62.44
53.42 | (M= 1)
48.17
41.21 | (M≂12)
38.00
32.54 | (M=12)
30.63
26.23 | (%=12)
25.53
21.86 | (M=12)
21.88
18.73 | (M=12) (M=12)
19.14 15.31
16.39 13.11 | | | 46.41
466
1386 | 35.80
605 | 28.27
624 | 26.23
22.79
774 | 18.99
929 | 16,28
1084 | 14.24 11.39
1239 1549 | | PARAMETER A .593 | 1386
.514 | 1967
. 485 | 2665
. 50 1 | 3417
.547 |
4405
.590 | 5458
.625 | 6673 9599
.655 .696 | | AZIMUTH AND TILT COEF.
A10556
A2 .1604 | | 0932
.4606 | .0337
.6179 | .0292
.6084 | .0263
.6104 | .0249
.6315 | .0245 .0246
.6729 .7987 | | A31647
A4 .0841 | 3717
-2137 | 4590
.2677 | 6187
.4480 | 6168
-4397 | 6306
.4417 | 6692
.4596 | 73569277
.4941 .5989 | | A5 .0392
B1 .0178
B2 -1,1270 - | .0708
.0178
-1.1270 - | .0837
.0178
1.1270 | 0035
0201
-1.1528 | 0030
0201
-1.1528 | 0058
0201
-1.1528 | 0128
0201
-1,1528 | 02440573
02010201
-1.1528 -1.1528 | | 83 .7151
84 .7111 | .7150
.7111 | .7151 | .7609
.6460 | .7609
.6461 | .7609 | .7608
.6461 | .7609 .7609
.6461 .6460 | | B5 -1.2731 - TOTAL ANNUAL TRANSMITTED F | MOTATION | 1.2732 | -1.2248 | -1,2248 | -1.2248 | -1.2248 | -1.2248 -1.2248 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB | QTA1 =
C1 = | 308146
0154
APR | C2 =2875
MAY JUN | [A2 = 25699!
C3 = -
Jul | 5
.3558
AUG | QTA3 = 22
C4 = 1.6591
SEP OCT | C5 =-1.2708
NOV DEC | | TAVE: 25 31
OHOR: 705 940 | 40 | 56
1639 | 66 73
1975 2088 | 77
2159 | 79
1904 | 67 57
1484 1139 | 44 30
802 565 | | • | | | | | | | | | LEXINGTON, KENTUCKY
TB30 | TB40 | TB45 | TB50 | ELEVATION
TB55 | = 988
1860 | TB65 | LAT = 38.0
1870 1880 | | SOUTH-VERT. (M= 1)
VT1/DD 113.84 | (M≃ 1)
55.16 | (M= 1)
40.87 | (M± 1)
31.62 | (M= 1)
25.48 | (M= 1)
21.19 | (M= 1)
18.07 | (M=12) (M=12)
15.28 11.65 | | VT2/DD 97.11
VT3/DD 84.31
MONTHLY DD 166 | 47.05
40.85 | 34.87
30.27 | 26.97
23.42 | 21.73
18.87 | 18.07
15.69 | 15.42
13.38 | 13.04 9.94
11.32 8.63 | | MONTHLY DD 166 ANNUAL DD 355 PARAMETER A .451 | 343
954
.566 | 464
1454
.586 | 599
2089
.595 | 744
2862
.600 | 894
3781
.610 | 1048
4862
.628 | 993 1303
6109 9178
.687 .787 | | AZIMUTH AND TILT COEF.
A1 .0534 | -0436 | .0428 | .0422 | .0418 | .0408 | .0393 | 00550041 | | A2 .3465
A33011
A4 .1822 | .2827
2611
.1565 | .3135
3040
.1835 | .3549
3571
.2165 | .3986
4144
.2526 | .4405
4740
.2904 | .4800
5357
.3296 | .5279 .5746
65107427
.4195 .4713 | | A5 .1169
B1 ~.0288 | .0860 | .0810
0288 | .0778
0288 | .0723
0288 | .0618 | .0458
0288 | 05430844
00920092 | | B3 .6511 | .6511 | 1.0028 | -1.0028
-6511 | -1.0028
.6511 | -1.0028
.6511 | -1.0028
.6511 | -1.0152 -1.0152
.6890 .6890 | | B4 .7624
B5 -1.1860 -
TOTAL ANNUAL TRANSMITTED F | | .7623
1.1859 | .7623
-1.1859 | .7623
-1.1859 | .7623
-1.1860 | .7623
-1.1859 | .7209 .7209
-1.1366 -1.1366 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. | QTA1 =
C1 = | | 01
C2 =2150 | A2 = 209159
C3 = - | | QTA3 = 17
C4 = 1.6968 | 79667.
C5 ==1,1640 | | MONTH: JAN FEB
TAVE: 31 34 | MAR
43 | APR
57 | MAY JUN
62 72 | JUL
75 | AUG
73 | SEP OCT
69 57 | NOV DEC
45 37 | | QHOR: 547 761 | 1101 | 1510 | 1755 1924 | 1858 | 1736 | 1365 1078 | 632 444 | | LOUISVILLE, N
SOUTH-VERT,
VT1/DD
VT2/DD
VT3/DD
MONTHLY DD
ANNUAL DD
PARAMETER A
AZIMUTH AND | 7630
(M= 1)
136.73
116.67
101.29
142
263
.631 | TB40
(M= 1)
61.61
52.57
45.65
314
871
.664 | TB45
(M= 1)
44.89
38.30
33.25
432
1394
.636 | T850
(M±.1)
34.38
29.34
25.47
563
2044
.624 | ELEVATION
TB55
(M= 1)
27.46
23.43
20.35
705
2814
.622 | = 489
TB60
(M= 1)
22.71
19.38
16.82
853
3716
.628 | TB65 (M= 1) 19.24 16.42 14.25 1007 4756 .640 | TB70
(M= 1)
16.67
14.23
12.35
1162
5966
.654 | T = 38.2
TB80
(M= 1)
13.16
11.23
9.75
1472
8930
.686 | |---|--|---|--|--|--|--|--|---|---| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
TOTAL ANNUAL | .0221
.1588
1605
.1289
.0128
0206
-1.0199 -
.6739
.7571
-1.1838 - | .0336
.2316
2511
.1825
0145
0206
1.0199
.6739
.7572
1.1838 | .0355
.2908
3209
.2272
.0156
0206
-1.0199
.6739
.7572
-1.1839 | .6739
.7571 | .0339
.3885
4399
.3030
.0123
0206
-1.0199
.6739
.7571 | .0329
.4272
4915
.3353
.0065
0206
-1,0199
.6739
.7571 | .0321
.4667
-5469
.3697
-0020
-0206
-1.0199
.6739
.7571
-1.1838 | .0313
.5132
6150
.4110
0142
0206
-1.0199
.6739
.7572
-1.1838 | .0295
.6342
7979
.5181
0493
0206
-1.0199
.6739
.7572
-1.1838 | | DUE SOUTH AND AZIMUTH AND MONTH: TAVE: QHOR: | ND VERTICAL | | 252591
0108
APR
56
1539 | QT
C2 =2505
MAY JUN
66 73
1699 1886 | A2 = 21027
C3 = -
JUL
76
1794 | 7
.3469
AUG
75
1695 | QTA3 = 11
C4 = 1.6789
SEP OCT
69 57
1386 1036 | 80660
C5 =-1.
NOV
46
629 | 1611
DEC
39
474 | | BATON ROUGE, SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD ANNUAL DD AZIMUTH AND | TB30
. (M=12)
NA
NA
NA
14
14 | TB40
(M=12)
636.82
543.05
471.63
39
72
.497 | TB45
(M=12)
382.41
326.11
283.22
66
167
.474 | TBS0
(M= 1)
204.32
173.67
150.74
113
359
.480 | ELEVATION
TB55
(M= 1)
155.64
98.29
85.31
199
690
.491 | 75
TB60
(M= 1)
75.14
63.87
55.43
307
1169 | T865
(M= 1)
53.20
45.22
39.25
433
1813
.505 | TB70
(M= 1)
39.96
33.97
29.48
577
2643
.517 | T = 30.5
TB80
(M= 1)
26.07
22.16
19.23
B84
5099
.596 | | A)
A2
A3
A4
A5
B1
B2
B3
B4
B5 | NA
NA
NA
NA
NA
NA
NA | .0931
.2243
2116
.0809
.0656
0806
-1.0487
.6280
.9179 | .1433
.4529
4545
.2036
.0978
0806
-1.0487
.6280
.9179
-1.2642 | 0778
.0838
1397
.1299
0562
0025
9155
.4913
1.0107
-1.2336 | 0641
.1731
2367
.1832
0469
0025
9155
4913
1.0108
-1.2336 | 0561
.2340
3082
.2246
0460
0025
9155
.4913
1.0108
-1.2337 | 0481
3121
4076
2814
0509
0025
9155
.4913
1.0108
-1.2336 | 0391
.4104
5387
.3532
0604
0025
9155
.4913
1.0108
-1.2336 | 0175
.6217
8405
.5047
0872
0025
9155
.4913
1.0108
-1.2336 | | TOTAL ANNUAL ODE SOUTH AS AZIMUTH AND MONTH: TAVE: QHOR: | ND VERTICAL | | = 257715
.0299
APR
68
1757 | 07
C2 ≥1411
MAY JUN
73 79
1920 1764 | A2 = 21443
C3 = -
JUL
80
1748 | | QTA3 = 1
C4 = 1.8309
SEP OCT
76 69
1451 1226 | 84339
C5 =-1.
NOV
58
919 | 1012
DEC
51
761 | | LAKE CHARLES SOUTH-VERT YT1/00 VT2/00 VT3/00 VT3/0D MONTHLY DO ANNUAL DD PARAMETER A AZIMUTH AND | T830
. (M=12)
NA
NA
NA
NA
NA | TB40
(M=12)
821-26
725-88
630-24
27
64
-407 | TB45
(M= 1)
357.16
303.38
263.28
57
155
.535 | TB50
(M= 1)
170.23
144.60
125.49
120
329
_607 | ELEVATION
TB55
(M= 1)
97.97
83.22
72.22
209
629
.661 | TB60
(M= 1)
64.63
54.90
47.65
317
1088 | TB6S
(M= 1)
46.79
39.75
34.49
438
1700
.646 | TB70
(M= 1)
35.42
30.09
26.11
578
2497
.650 | T = 30.1
T880
(M= 1)
23.18
19.69
17.09
884
4883 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | NA
NA
NA
NA
NA
NA
NA | .2289
.4980
4804
.2914
.1096
0987
9870
.5873
.9272
-1.2415 | 0609
.0558
1065
.0911
9614
0060
8863
.4882
1.0149
-1.1995 | 0477
.0741
1261
.0959
0543
0060
8863
.4882
1.0150
-1.1995 | 0386
.1072
1692
.1156
0546
0600
8863
.4882
1.0150
-1.1995 | 0334
.1787
2648
.1660
0619
0060
8863
.4882
1.0149 | 0272
.2526
3616
.2191
0683
0060
8863
.4882
1.0150
-1.1996 | 0208
.3288
4615
.2747
0746
0060
8863
.4882
1.0150
-1.1995 | 0085
.5182
7196
.4131
0914
0060
0863
.4882
1.0149
-1.1995 | | TOTAL ANNUAL
DUE SOUTH A
AZIMUTH AND
MONTH:
TAVE:
QHOR: | ND VERTICAL | | = 249261
.0267
APR
67
1589 | 01
C2 =0845
MAY JUN
74 79
1871 2013 | FA2 = 20731
C3 = -
JUL
81
1774 | | QTA3 = 1
C4 = 1.8353
SEP OCT
77 67
1468 1246 | 78216
C5 =-1.
NOV
61
686 | 0595
DEC
51
736 | | NEW ORLEANS, LO SOUTH~VERT. (VT1/DD VT2/DD VT3/DD MONTHLY BD ANNUAL DD PARAMETER A AZIMUTH AND TI | T830
M≈ 1)
NA
NA
NA
2
2
2 | TB40
(M= 1)
963.99
819.69
711.52
25
45 | TB45
(M= 1)
439.33
373.56
324.27
54
124
.606 | TB50
(M= 1)
229.37
195.04
169.30
104
280
.628 |
ELEVATION
TB55
(M= 1)
137.65
117.04
101.60
173
544
.594 | = 10
TB60
(M= 1)
91.60
77.89
67.61
260
940
.566 | TB65 (M= 1) 63.96 54.38 47.21 372 1526 .560 | TB70
(M= 1)
46.83
39.82
34.56
508
2323
.565 | T = 30.0
TB80
(M= 1)
29.44
25.04
21.73
808
4698
.594 | |--|--|--|--|---|--|--|--|--|--| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | NA
NA
NA
NA
NA
NA
NA
NA
NA | | .0030
0240
.0067
.0112
0288
0577
9371
.5243
1.0097 | .0116
.0538
0836
.0715
0330
0577
9371
.5243
1.0096
-1.2284 | .0216
.1464
1951
.1425
0392
0577
9371
.5243
1.0097 | .0317
.2432
3172
.2136
0463
0577
9371
.5243
1.0097
-1.2285 | .0421
.3464
4548
2876
0563
0577
9371
.5243
1.0097 | .0508
.4550
6052
.3675
0705
0577
9371
.5243
1.0097
-1.2284 | .0654
.7372
-1.0139
.5828
1161
0577
9371
.5243
1.0097
-1.2285 | | TOTAL ANNUAL TRA DUE SOUTH AND AZIMUTH AND TI MONTH: JA TAVE: 5 QHOR: 81 | VERTICAL
LT COEF.
IN FEB | QTA} =
Cl =
Mar | 268094
.0188
APR
69
1699 | QT/
C2 =1506
MAY JUN
74 78
1958 1893 | A2 = 223086
C3 =
JUL
80
1780 | . 4857
AUG
81 | QTA3 = 19
C4 = 1.8632
SEP OCT
74 71
1537 1374 | 1787
C5 ±+1.
NOV
60
950 | 1251
DEC
55
806 | | SHREVEPORT, LOU SOUTH-VERT. (VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND TI | TB30
(M± 1)
NA
NA
NA
2
3
NA | (M=12)
553.93
472.66
410.51 | 1B45
(M=12)
260.07
221.91
192.73
103
293
.505 | TB50
(M=12)
143.07
122.08
106.03
187
627
.448 | ELEVATION
T855
(M= 1)
86.78
73.86
64.11
284
1104
.472 | = 259
TB60
(M= 1)
60.14
51.18
44.43
410
1709
.479 | TB65
(M= 1)
45.03
38.32
33.27
548
2466
.495 | TB70
(M= 1)
35.39
30.12
26.15
697
3393
.516 | T = 32.5
TB80
(M= 1)
24.52
20.87
18.12
1006
5918
.564 | | A1
A2
A3
A4
A5
B1
B2
B3
84
B5 | NA
NA
NA
NA
NA
NA
NA
NA | .6308
.8380
-1.2670 | 0518
.4174
4269
.2822
.0450
0076
-1.0389
.6308
.8380
-1.2670 | 0609
.6216
6600
.4278
.0497
0076
-1.0389
.6308
.8380
-1.2670 | .0541
.2833
4082
.2525
0717
0437
9446
.5258
.9363
-1.2563 | .0533
.3357
-4715
.2900
0720
0437
9446
.5258
.9363
-1.2563 | .0510
.3982
5507
.3339
0738
0437
9446
.5258
.9363
-1.2563 | .0480
.4740
6485
.3869
0765
0437
9446
.9363
-1.2563 | .0422
.7047
9625
.5557
0983
0437
9446
.5258
.9363
-1.2563 | | TOTAL ANNUAL TRA TOUE SOUTH AND AZIMUTH AND TI MONTH: JA TAVE: 4 QHOR: 73 | VERTICAL
LET COEF.
AN FEB
17 50 | QTA1 =
C1 = - | 217362
.0280
APR
66
1550 | CZ =1261
MAY JUN
73 78
1919 2098 | A2 = 230686
C3 = -
JUL
82
2043 | .5261
Aug
81 | QTA3 = 19
C4 = 1.8371
SEP OCT
76 65
1502 1255 | 08185
C5 =-1.
NOV
53
914 | 1774
DEC
46
756 | | | 62.25
53.02
46.01
385
1109
.290 | TB40 (#= 1) 33.47 28.68 24.92 607 2370 .394 | TB45
(M= 1)
26.71
22.89
19.89
761
3232
.437 | 1850
(M= 1)
22.20
19.02
16.53
916
4229
.473 | ELEVATION
TB55
(M=12)
18.89
16.20
14.08
954
5381 | = 203
TB60
(M=12)
16.25
13.93
12.11
1109
6692
.565 | TB65
(M= 12)
14.26
12.23
10.62
1264
8167
.609 | TB70
(M=12)
12.70
10.89
9.46
1419
9780
.642 | T = 44.8
TB80
(M=12)
10.42
8.94
7.77
1729
13255
.664 | | A1 - A2 - A3 - A4 - A5 - B1 B2 - B3 B4 B5 - 1 | 0672
6687
4352
4090
1472
.0321
9553
5492
.8278 | .8291
.5690
-1.1921 | .0801
.8902
8306
.4715
.1732
0023
-1.1854
.8291
.5690
-1.1921 | .8291
.5690 | 0217
.9701
8631
.6305
.1501
.0228
-1.2002
.8487
.5104
-1.1755 | 0216
.9458
8766
.6246
.1225
.0228
-1.2002
.8487
.5104
-1.1756 | 0224
.9396
9065
.6323
.0966
.0228
-1.2002
.8487
.5104
-1.1756 | 0240
.9597
9623
.6590
.0723
.0228
-1.2002
.8487
.5104
-1.1756 | 0288 1.0819 -1.1541 .7690 .0311 .0228 -1.2001 .8487 .5104 -1.1755 | | TOTAL ANNUAL TRA DUE SOUTH AND AZIMUTH AND TI MONTH: JA TAVE: 2 QHOR: 46 | VERTICAL
ILT COEF.
NN FEB
20 16 | | 267176
.0142
APR
41
1467 | QT
C2 ≠3645
MAY JUN
52 62
1740 1851 | A2 = 22345
C3 = -
JUL
67
1887 | . 1894
AUG
66 | OTA3 = 19
C4 = 1.4786
SEP OCT
58 46
1209 884 | 92363
C5 =-1.
NOV
38
418 | 1996
DEC
24
390 | | CARIBOU, MAINE TB30 SOUTH-VERT. (M= 1) VT1/DD 30.10 VT2/DD 25.74 VT3/DD 22.36 MONTHLY DD 560 ANNUAL DD 1804 PARAMETER A 580 AZIMUTH AND TILT COEF | TB40
(M=12)
19.22
16.47
14.31
725
3285
.674 | T845
(M=12)
15.84
13.57
11.80
879
4256
.740 | TB50
(M=12)
13.47
11.54
10.03
1034
5369 | ELEVATION
T855
(M=12)
11.72
10.04
8.72
1189
6614
.838 | = 623
TB60
(M=12)
10.36
8.88
7.72
1344
8011
.879 | TB65
(M=12)
9.29
7.96
6.92
1499
9562
.915 | TB70
(M=12)
8.42
7.22
6.27
1654
11228
.939 | = 46.9
TB80
(M=12)
7.09
6.08
5.28
1964
14762
.951 | |--|---|---|--|---|--|--|--|---| | A10620
A2 .1112
A31125
A4 .1611
A50613
B1 .0489
B2 -1.0812
B3 .7505
B4 .5493
B5 -1.1375 | .0423
.4036
3509
.3015
.0460
.0141
-1,1578
.8430
.4755
-1,1410 | .0417
.4054
3662
.3033
.0390
.0141
-1.1578
.8430
.4755
-1.1410 | .8430
.4755 | .0395
.4246
4090
.3196
.0269
.0141
-1.1578
.8430
.4755
-1.1410 | .0379
.4384
4358
.3319
.0194
.0141
-1.1578
.8430
.4755
-1.1410 | .0364
-4569
-4692
-3491
.0102
.0143
-1.1578
.8429
.4755
-1.1410 | .8430
.4755 | .0346
.5720
6400
.4484
0216
.0141
-1.1578
.8430
.4755
-1.1410 | | TAVE: 12 | L QTA1 = | 254829
.0461
APR
36
1425 | OT
C2 =3488
MAY JUN
51 60
1617 1815 | A2 = 213310
C3 =
JUL
64
1746 | .1789
AUG
61 | QTA3 = 16
C4 = 1.4228
SEP OCT
54 43
1028 687 | C5 ±-1.1
NOV
3} | 933
DEC
16
308 | | PORTLAND, MAINE TB30 SOUTH-VERT. (M= 1) VT1/DD 64.80 VT2/DD 55.44 VT3/DD 48.16 MONTHLY DD 271 ANNUAL DD 774 PARAMETER A .385 | TB40
(M= 1)
33.08
28.90
25.18
519
1831
.501 | TB45
(M= 1)
26.38
22.57
19.61
667
2627 | TB50
(M= 1)
21.44
18.35
15.94
820
3583
.575 | ELEVATION
TB55
(M=12)
17.82
15.27
13.27
904
4696
.621 | = 62
TB60
(M=12)
15.21
13.03
11.33
1059
5975
.663 | TB65
(M=12)
13.27
11.37
9.88
1214
7421 | TB70
(M=12)
11.77
10.08
8.76
1369
8997
.726 | = 43.7
TB80
(M=12)
9.59
8.22
7.14
1679
12465
.738 | | AZIMUTH AND TILT COE
A1 .1505
A2 .2482
A32127
A4 .1950
A5 .0259
B10695
B2 -1.1214
B3 .7598
B4 .6294
B5 -1.1787 | . 1219
.3455
3280
.2522
.0330
0695
-1.1214
.7598
.6294
-1.1787 | .1166
.4036
3986
.2914
.0336
0695
-1.1214
.7597
.6294
-1.1787 | .1143
.4681
4795
.3372
.0314
0695
-1.1214
.7598
.6294
-1.1787 | 1041
.7696
7473
.4968
.0917
.0137
-1.2016
.8542
.5509
-1.1726 | 0905
.7861
7895
.5168
.0758
.0137
-1.2016
.8542
.5509 | 0792
.8082
8377
.5405
.0597
.0137
-1.2016
.8542
.5509
-1.1727 | 0708
.8471
9033
.5757
.0444
.0137
-1.2016
.8542
.5509
-1.1726 |
0601
.9823
-1.0993
.6864
.0142
.0137
-1.2016
.8542
.5509
-1.1726 | | TAVE: 23 | AL QTA1 = | 244177
.0171
.APR
42
1250 | Q1
C2 =3600
MAY JUN
52 63
1575 1711 | A2 = 20413
C3 = -
JUL
68
1779 | . 1835
AUG
66 | QTA3 = 1
C4 = 3.4876
SEP OCT
59 49
3186 857 | C5 ±-1.1 | 647
DEC
25
368 | | BALTIMORE, MARYLAND TB30 SOUTH-VERT. (M± 1) VT1/OD 174.04 VT2/DD 148.73 VT3/DD 129.17 MONTHLY DD 128 ANNUAL DD 271 PARAMETER A .463 | TB40
(M= 1)
68.94
58.91
51.17
323
911
.587 | TB45
(M= 1)
48.71
41.62
36.15
457
1479
.603 | T850
(M= 1)
36.98
31.61
27.45
602
2193
.593 | ELEVATION
T855
(M= 1)
29.68
25.36
22.03
750
3036
.581 | = 154
T860
(M=12)
24.09
20.60
17.89
773
4016
.607 | TB65
(№ 12)
20.07
17.16
14.91
928
5136
.641 | TB70
(M=12)
17.20
14.71
12.77
1083
6417
.675 | = 39.2
TB80
(M=12)
13.37
11.43
9.93
1393
9503
.726 | | AZIMUTH AND TILT COE A1 .0786 A2 .3347 A33344 A4 .1506 A5 .0843 B10406 B2 -1.0932 B3 .7171 B4 .7363 B5 -1.2173 | .0752
.3233
3470
.1650
.0588
0406
-1.0932
.7171
.7363
-1.2173 | .0770
.3693
4022
.2006
.0573
0406
-1.0932
.7171
.7363
-1.2174 | .0808
.4392
4846
.2498
.0581
0406
-1.0932
.7171
.7363
-1.2174 | .0830
.5284
5931
.3128
.0567
0406
-1.0932
.7171
.7363
-1.2173 | -, 1298
.6683
-,7550
.4748
-,0129
.0410
-1,1174
.7602
.6740
-1,1764 | 1215
.6996
8025
.5010
0189
.0410
-1.1174
.7602
.6739
-1.1764 | 1137
.7260
8460
.5249
0269
.0410
-1.1174
.7602
.6740
-1.1764 | 1028
.8148
9866
.6048
0543
.0410
-1.1174
.7602
.6739
-1.1763 | | TAVE: 30 | AL OTA1: | = 268723
0188
APR
51
1493 | C2 =3188
MAY JUN
61 72
1728 1940 | FA2 = 22418
C3 = -
JUL
76
1835 | | QTA3 = 1
C4 = 1.5998
SEP OCT
68 57
1352 1053 | 92782
C5 =-1.3
NOV
46
674 | 1757
DEC
35
490 | | PATUXENT RIVER, MARYLAND TB30 TB40 SDUTH-VERT. (M= 1) (M= 1) VT1/DD 297.37 95.17 VT2/DD 253.91 81.27 VT3/DD 220.50 70.57 MONTHLY 00 76 237 ANNUAL 0D 97 495 PARAMETER A .451 .659 AZIMUTH AND VILT COEF. | TB45
(M= 1)
63.98
54.63
47.44
353
925
.662 | T850
(M= 1) (M
46.20 3
39.45 3 | EVATION = 46
TB55 TB60
H= 1) (M= 1)
S5.63 28.88
30.42 24.66
26.42 21.42
634 782
2237 3098
.606 .591 | 7865
(M= 1)
24,15
20,62
17,91
936
4139
,594 | TB70 TB80 (M= 1) (M= 1) 20.72 16.14 17.69 13.78 15.37 11.96 1091 1401 5363 8367 .606 .628 | |---|--|--|--|--|---| | A1 .0031 .0171 A2 .0356 .0996 A303811032 A4 .0282 .0865 A5 .0006 .0023 B101810181 B2 -1.0579 -1.0579 B3 .6729 .6729 B4 .7663 .7663 B5 -1.2124 -1.2124 | .0212
.1741
~.1865
.1388
.0059
0181
-1.0579
.6729
.7663
-1.2124 | .2683
2876
.2016
.0148
0181
-1.0579
.6729 | .0277 .0301
.3501 .4449
.37834925
.2565 .3229
.0204 .0196
.01810181
.0579 -1.0579
.6729 .6729
.7663 .7663
.2124 -1.2124 | .6729
.7663 | .0301 .0271 .6164 .7936 -71239556 .4468 .5837 .0087016301810181 -1.0579 -1.0579 .6729 .6729 .7663 .7663 -1.2124 -1.2124 | | | = 270660
0052
APR
54
1562 | 0TA2
C2 = ~.3040
MAY JUN
64 73
1666 2007 | = 225690
C3 =2834
JUL AUG
77 76
1897 1694 | QTA3 = 19-
C4 = 1.6231
SEP OCT
71 60
1372 1037 | 4035
C5 =-1.1652
NOV DEC
48 39
712 567 | | BOSTON, MASSACHUSETTS TB30 SOUTH-VERT. (M= 1) VT1/DD 126.94 48.07 VT2/DD 108.50 41.09 VT3/DD 94.22 35.68 MONTHLY DD 135 ANNUAL DD 261 1040 PARAMETER A 720 .690 | T845
(M= 1)
33.95
29.02
25.20
506
1717
.686 | TB50
(M= 1) (M= 1) (M= 26.19 22.38 | LEVATION = 16
TB55 TB60
TE 1) (M= 1)
21.27 17.86
18.18 15.27
15.79 13.26
808 962
3508 4643
.697 .706 | TB65
(M= 1)
15.38
13.15
11.42
1117
5949
.718 | LAT = 42.4
TB70 TB90
(M= 1) (M= 1)
13.51 10.86
11.55 9.28
10.03 8.06
1272 1582
7410 10728
.731 .737 | | AZIMUTH AND TILT COEF. A1 | .2413
.2939
3640
.2210
0253
2002
-1.0800
.7407
.6577
-1.1651 | .3565
4380
.2658
0270
2002
-1.0800 -1.
.7408 | .2679 .2743
.4266 .4961
.52506134
.31184 .3717
.03270401
.2002 ~.2002
.7408 .7407
.6577 .6577
.1650 -1,1651 | .7407
.6577 | . 2809 . 2923
.61757559
77139592
.4658 .5771
05510792
20022002
-1.0800 -1.0800
.7407 .7407
.6577 .6577
-1.1651 -1.1651 | | | = 243348
0039
APR
47
1282 | OTA2
C2 =3052
MAY JUN
56 67
1620 1910 | = 203130
C3 =2438
JUL AUG
72 71
1725 1478 | QTA3 = 17
C4 = 1.5616
SEP OCT
62 S3
1288 835 | 4713
C5 =-1.1892
NOV DEC
44 32
502 385 | | ALPENA, MICHIGAN TB30 TB40 SOUTH-VERT. (M= 1) (M=12) YT1/DD 35.63 16.82 YT2/DD 30.42 14.35 VT3/DD 26.41 12.45 MONTHLY DD 364 495 ANNUAL DD 1118 2433 PARAMETER A 477 .786 AZIMUTH AND TILT COEF. | TB45
(M=12)
12.81
10.93
9.49
650
3313
.907 | T850
(M=12) (M=12) (M=10.34
8.82
7.66
805
4337 | LEVATION = 689
TB55 TB60
\$\frac{1}{2}\) \{M=12\) \{6.37\\ 7.40\\ 6.37\\ 6.42\\ 5.53\\ 960\\ 1115\\ 5495\\ 6.777\\ 0.069\\ 1.126\\ | TB65
(M=12)
6.56
5.59
4.85
1270
8206
1.176 | T870 T880 (M=12) (M=12) 5.84 4.80 4.98 4.09 4.33 3.55 1425 1735 9780 13228 1.218 1.274 | | A104160913
A2 .3542 .1441
A337392104
A4 .2124 .1899
A5 .01540991
B1 .0131 .0532
B2 -1.01699744
B3 .7119 .6958
B4 .6257 .6044
B5 -1.0842 -1.0288 | 0735
.1308
1905
.1695
0860
.0532
9744
.6958
.6044
-1.0289 | . 1283
1872
1628
0805
0532
9744
6958
6044 | .05560505
.1334 .1415
.19482062
.1643 .1689
.07870783
.0532 .0532
.97449744
.6958 .6958
.6044 .6044
.0289 -1.0289 | 0464
.1507
2195
.1751
0788
.0532
9744
.6958
.6044
-1.0289 | 04330394
.1617 .1908
23562790
.1834 .2085
08050884
.0532 .0532
97449745
.6958 .6958
.6044 .6044
-1.0289 -1.0289 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAT AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 39 17 28 QHOR: 367 598 1064 | = 236263 | 07A2
C2 =2352
MAY JUM
51 64
1821 1883 | * 196800
C3 *3533
JUL AUG
67 68
1938 1577 | QTA3 = 16
C4 = 1.6042
SEP OCT
56 49
1153 722 | 9126
C5 =-1.1796
NOV DEC
36 24
393 247 | ``` DETROIT, MICHIGAN ELEVATION = 627 LAT = 42.4 TB30 TRAO TB45 TB50 TB55 TB60 TB65 TB70 SOUTH-VERT. (M= 2) 1/0D 95.96 TB80 (M=12) (M=12) (M=12) (M=12) (M=12) 11.06 (M= 12) 7.68 (M=12) (M= 12) VT1/00 VT2/00 36.39 25.53 19.45 15.61 12.96 9.64 81.38 31.07 21.80 8.23 7.15 16.61 13.32 11.06 9.44 6.56 VT3/DD 70.56 26.97 18.92 14.42 11.57 9.60 8.20 5.69 MONTHLY DO 185 321 458 601 749 903 1058 1213 1523 2116 ANNUAL DD 2923 492 1429 3849 4915 6115 7469 10636 PARAMETER A . 283 .448 .552 .630 .700 .767 .825 .880 .969 AZIMUTH AND TILT COEF. A1 .0047 A2 -1.0572 -.0932 ~.0699 -.0568 -.0473 -.0398 -.0341 -.0297 -.0240 .5695 -.7125 .4023 -.4972 .4865 .4483 . 4213 .3935 .3892 . 4048 -.5188 A3 1.0485 -.6032 -.5525 .3103 -.4895 -.4B85 -.5216 A4 -.5056 .3788 .3301 .2932 .2920 .2971 -. 1716 -.0333 A5 -.0446 ~_0360 -.0337 -.0365 -.0412 -.0466 -.0632 ΒĬ .0086 .0369 .0369 .0369 .0369 . 0369 .0369 .0369 .0369 -.7547 -1.0292 -1.0292 -1.0292 -1.0292 .7276 -1.0292 -1.0292 -1.0292 -1.0292 B3 .3607 .7276 .7276 .7276 .7276 .7276 .7276 .7276 .9113 .6423 6423 .6423 .6423 .6423 .6423 .6423 .6423 B5 -1.1367 -1.0791 -1.0791 -1.0791 -1.0791 -1.0791 -1.0790 -1.0791 -1.0791 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI QTA2 = 199365 OTAL Cl = 239317 Q7A3 = 171348 AZIMUTH AND TILT COEF. .0255 C2 = C3 = -.3119 1.6053 C5 =-1.1476 NOV DEC C4 = JAN 26 MONTH: FEB MAR APR MAY JUN ĴŬL AUG SEP OCT DEC TAVE: 26 35 49 61 69 71 67 56 42 30 424 OHOR: 690 969 1384 1732 1898 1891 1551 1297 833 491 33B FLINT, MICHIGAN ELEVATION = 764 LAT = 43.0 TB30 TB40 TB45 TB50 T855 TB60 TB65 TB70 TB80 (M= 1) 26.05 22.25 19.32 564 SOUTH-VERT. (M= 1) (M= 1) 20.48 17.50 (M=12) (M=12) (M=12) (M=12) (M=12) (M=12) VT 1/00 48.49 16.06 9.54 8.15 8.41 7.18 13.09 11.04 6.79 VT2/DD 41.41 11.18 13.72 9.43 5.B0 VT3/00 35.96 15.19 718 11.91 9.71 835 8,19 7.08 5.03 MONTHLY DD 303 680 990 1145 1300 1610 ANNUAL DD 816 1908 2681 3583 4617 5782 7101 8584 PARAMETER A .590 .573 .564 .631 .698 . 759 .817 .871 .944 AZIMUTH AND TILT COEF. -. 1057 -.0046 -.0328 -. [1141 -.0983 -.0460 -.0911 -.0845 -.0759 A2 .3773 .4751 .5262 .4881 .5154 .4719 -.5158 .4612 .4577 . 4824 -.3741 -.4671 -.5186 -.5475 -.5250 -.5135 -.5205 -.5728 . 1951 .3424 A4 .2567 .2890 .3596 .3346 .3317 .3348 .3663 A5 .0683 .0895 .0983 .0158 .0199 .0098 0023 -.0066 -.0278 Bi 0299 .0563 -1.0458 0299 0563 0563 .0563 .0563 .0563 B2 -1.0444 -1.0444 -1.0444 -1.0458 -1.0458 -1.0458 -1.0458 -1.0458 .7393 .6205 B3 .7152 .7152 .7152 .7394 .7394 ,7393 .7393 .7394 B4 . 66 18 .6618 .6618 6205 6205 6205 .6205 . 6205 B5
-1.1232 . 1231 -1.1231 -1.0862 -1.0862 -1.0861 -1.0861 -1.0861 -1.0861 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL OTAL QTA2 = 188692 -.2530 °2 226423 QTA1 QTA3 = 162232 AZIMUTH AND TILT COEF. .0136 C2 = 2909 C4 = 1.5772 C5 =-1.1172 MAY 54 MAR 31 MONTH: JAN APR JUN 0CT 52 JUL AUG SEP NOV DEC TAVE: 21 24 46 67 70 68 62 38 OHOR: 647 411 999 1313 1698 1831 1764 1184 1523 808 372 306 GRAND RAPIDS, MICHIGAN ELEVATION = 804 LAT = 42.9 T630 TB40 TB45 TB50 T865 TB55 TB60 TB70 T680 (M= 12) 19.30 16.48 14.31 575 SOUTH-VERT. (M=12) (Mr. 1) (M=12) (M=12) 8.22 (M = 12) (M=12) (M=12) \{M=12\} 15.20 12.98 11.27 730 12.54 10.71 VT 1/00 59.48 26.42 10.67 9.28 5.68 50.79 VT2/00 22.56 9.11 7.91 1040 7.93 7.02 VT3/00 19.58 44.10 9.29 5.88 6.09 4.96 MONTHLY DD 221 420 885 1195 1350 1660 ANNUAL DD 654 1793 2571 3469 4501 5654 6947 8393 11691 PARAMETER A .516 .634 .728 .861 .798 .915 .967 1.013 1.076 AZIMUTH AND TILT COEF. -. 1232 -. 1050 -.0941 -.0856 -.0740 -.0794 -.0696 -.0643 .2964 -.3815 .2905 -.3756 A2 .3337 .3248 .3029 .2918 .2916 -.3794 . 2980 .3340 A3 -.3626 -.4192 ~.3901 -.3760 -.3915 -. 4497 A4 . 1937 .2715 .2527 .2470 .2438 .2444 .2479 2565 . 2947 A5 -.0156 -.0664 .0588 -.0556 -.0542 -.0548 -.0573 ~.0621 -.0793 -.0409 -1.0328 81 .0715 .07 15 .0715 .0715 .0715 .0715 .0715 .0715 -1.0229 B2 -1.0229 -1.0229 -1.0229 -1.0229 -1.0229 -1.0229 -1.0229 .6918 B3 .7168 .7168 .7168 .7168 .7168 .7168 .7168 .7168 84 .6612 .6227 .6227 .6227 .6227 .6227 6227 6227 .6227 R5 -1.1184 -1.0846 -1.0846 -1.0846 -1.0846 -1.0845 -1.0846 -1.0846 -1.0846 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI QTA1 242968 QTA2 = 202220 OTA3 = 173676 AZIMUTH AND TILT COEF 0178 C2 = -.2213 C4 = SEP C3 = -.3910 1.6545 C5 = -1.1923 NOV DEC MONTH: JAN FEB MAR MAY JUN JÚL APR AUG OCT DEC TAVE: 23 724 33 46 59 67 26 313 71 68 60 53 39 OHOR: 369 973 1468 1741 1966 1970 1681 1238 877 466 ``` | SAULT STE. MARIE, MICH
TB30
SOUTH-VERT. (M≈ 1)
VT1/DD 21.63
VT2/DD 18.50
VT3/DD 16.06
MONTHLY DD 576
ANNUAL DD 1687
PARAMETER A .762
AZIMUTH AND TILT COEF. | TB40 TB45 (M= 1) (M= 1) 12.00 (M= 1) 12.00 10.21 10.48 8.92 883 1038 3170 4119 .824 .841 | (M≈ 1)
10.45
8.93
7.76
1193
5200
.875 | ELEVATION
TB55
(M= 1)
9.24
7.90
6.87
1348
6444 | TB60
(M= 1)
8.29
7.09
6.16
1503
7847
.944 | T865
(M≈ 1)
7.52
6.43
5.58
1658
9407
.975 | TB70 TB80 (M= 1) (M= 1) 6.87 5.88 5.02 5.11 4.36 1813 2123 11082 14621 .996 1.006 | |--|--|--|---|---|--|--| | A1 .0607
A2 .1741
A32281
A4 .1058
A50267
B10567
B2 -1.0798
B3 .7656
B4 .5853
B5 -1.1149
TOTAL ANNUAL TRANSMITTED | .0661 .0687
.2037 .2234
2588279
.1300 .1462
02420232
05670567
-1.0798 -1.0798
.7656 .7656
.5853 .5853
-1.1148 -1.1149 | .2410
2999
.1622
0235
0567
-1.0798
.7656
.5853
-1.1149 | .0685
.2570
3189
.1779
0249
0567
-1.0798
.7656
.5853
-1.1149 | .0673
.2742
3408
.1950
0276
0567
-1.0798
.7656
.5853
-1.1148 | .0661
.2950
3691
.2155
0325
0567
-1.0798
.7656
.5853 | .0657 .0675
.3226 .3949
-4076 -5076
.2418 .3075
03950572
05670567
-1.0798 -1.0798
.7656 .7656
.5853 .5853
-1.1149 -1.1149 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAYE: }) } | Čl = .0101
B MAR APR
4 23 37 | CZ =2990
MAY JUN
50 57
1695 1867 | 1 JUL
63 | | QTA3 = 1
C4 = 1.5480
SEP OCT
55 45
1040 661 | 69700
C5 =-1.1912
NOV DEC
34 19
339 265 | | TRAVERSE CITY, MICHIGAN T830 SOUTH-VERT. (M= 1) VT1/DD 36.89 VT2/DD 31.50 VT3/DD 27.35 MONTHLY DO 302 ANNUAL DD 883 PARAMETER A .650 AZIMUTH AND TILT COEF. | T840 T845
(M= 1) (M= 1)
18.77 14.89
16.03 12.71
13.92 11.04
593 748
2161 3016
.734 .756 | (M= 1)
12.33
10.53
9.14
903
4003 | ELEVATION
TB55
(M= 1)
10.52
8.99
7.80
1058
5115
.823 | = 630
TB60
(M= 1)
9.18
7.84
6.81
1213
6357
.857 | TB65
(M≈ 1)
8.14
6.95
6.04
1368
7743
.891 | TB70 TB80
(M= 1) (M= 1)
7.31 6.08
6.24 5.19
5.42 4.51
1523 1833
9277 12668
.925 .969 | | A1 .0133
A2 .3264
A33240
A4 .1856
A5 .0310
B1 .0110
B2 -1.0243
B3 .7076
B4 .6234
B5 -1.0943
FOTAL ANNUAL TRANSMITTED | .0161 .0170
.2992 .3083
-3096 -3233
.1835 .1931
.0177 .0161
.0110 .0110
-1.0243 -1.0243
.7076 .7076
.6234 -6234
-1.0943 -1.0943 | .3108
3306
.1989
.0130
.0110
-1.0243
.7076
.6234 | .0159
.3170
3436
.2085
.0082
.0110
-1.0243
.7076
.6234
-1.0943 | .0146
.3276
3630
.2224
.0014
.0110
-1.0243
.7076
.6234
-1.0943 | .0133
.3396
3848
.2377
0064
.0110
-1.0243
.7076
.6234
-1.0943 | .0120 .0100
.3522 .3944
40804768
.2540 .3002
01510358
.0110 .0110
-1.0243 -1.0243
.7076 .7076
.6234 .6234
-1.0943 -1.0943 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEI TAVE: 20 2 QHOR: 310 529 | OTA1 = 226231
C1 = .0128
B MAR APR
1 29 42 | 0
C2 ±2269
MAY JUN
54 63
1718 1908 | JUL
70 | .3422
AUG
66 | QTA3 = 1
C4 = 1.6223
SEP OCT
59 50
1166 759 | 61837
C5 =-1.1644
NOV DEC
37 26
346 280 | | DULUTH, MINNESOTA 1830 SOUTH-VERT. (M= 1) VT1/DD 25.32 VT2/DD 21.70 VT3/DD 18.86 MONTHLY DD 740 ANNUAL DD 2107 PARAMETER A 640 AZIMUTH AND TILT COEF. | TB40 TB45 (M= 1) (M= 1) 17.92 15.61 15.36 13.38 13.35 11.62 1045 1200 3716 4704 .610 .611 | (M=12)
13.67
11.73
10.19
1098
5823 | ELEVATION
T855
(M=12)
11.98
10.28
8.93
1253
7081
.689 | = 1417
TB60
(M=12)
10.66
9.14
7.95
1408
8474
.735 | TB65
(M=12)
9.60
8.24
7.16
1563
10013
.775 | TB70 TB80 (M=12) (M=12) 8.73 7.49 7.49 6.35 6.51 5.52 1718 2028 11669 15196 .805 .827 | | A1 .0406 A2 .2359 A32381 A4 .1457 A5 .0183 B1 .0137 B2 -1.1712 B3 .8235 B4 .5257 B5 -1.1807 TOTAL ANNUAL TRANSMITTED | .0383 .0351
.3803 .4387
36164179
.2308 .2694
.0523 .0609
.0137 .0137
-1.1712 -1.1712
.8235 .8235
.5257 .5257
-1.1807 -1.1807 | 1374
.6797
5412
.4191
.1575
.0755
-1.2280
.8835
.4472
-1.1806 | 1261
.6716
5584
.4228
.1393
.0755
-1.2280
.8835
.4472
-1.1806 | 1170
.6707
5814
.4310
.1224
.0755
-1.2280
.8835
.4471
-1.1805 | 1097
.6776
6123
.4448
.1057
.0755
-1.2280
.8835
.4472
-1.1806 | 1047 1019
.6992 .7862
6583 7922
.4690 .5477
.0896 .0618
.0755 .0755
-1.2280 -1.2280
.8835 .8835
.4471 .4472
-1.1806 -1.1806 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 6 13 670 | QTA1 = 251930
C1 = .0147
MAR APR
22 36 | Q
C2 =3968
MAY JUN
49 58
1557 1765 | | 1366
Aug
63 | QTA3 = 18
C4 = 1.4154
SEP OCT
55 45
1050 723 | 81791
C5 =-1.1950
NOV DEC
28 14
369 296 | ``` INTERNATIONAL FALLS, MINNESOTA TB30 TB4 ELEVATION = 1184 LAT = 48.6 TR40 TB45 TB50 TB55 TR60 TB65 TB70 SOUTH-VERT. (M= 1) /DD 19.05 TB80 (M= 1) 14.15 (M=12) 12,42 (M=12) 7.84 (M \times 12) (M=12) (M=12) (M=12) 7.17 (M=12) VT 1/00 10.86 9.63 8.65 6.13 VT2/00 16.35 14.21 12,14 10.55 10.65 9.32 7.42 8.26 6.72 6.15 5.26 VT3/DD 8.10 1202 9.26 7.18 6.45 5.84 5.35 MONTHLY DD 895 1205 1051 1354 1509 1664 10578 1819 2129 ANNUAL DD 2711 4331 5304 6402 7645 9040 12229 15757 PARAMETER A RAMETER A .622 AZIMUTH AND TILT COEF. A1 .0246 .659 .690 .811 .868 .917 .956 .999 .0276 -.0075 -.0069 -.0077 -.0070 -.0073 -.0081 -.0091 .3728 A2 .4315 .3945 .3880 .3914 .3838 .3843 .4072 . 46 15 A3 -.3199 -.3724 -.3479 -.3504 -.3561 -.3672 ~.3864 -.4159 -.5005 .2064 A4 .2383 .3145 .3041 .2975 .2962 .3015 .3147 .3606 AŞ .0717 .0867 .0244 .0233 .0205 .0162 .0102 .0027 -.014B -.0022 -1.2227 81 -.0022 -1.2227 .0118 .0118 .0118 .0118 .០) រក .0118 .0118 -1.2032 -1.2032 -1.2032 -1.2032 ~1.2032 -1.2032 .8737 -1.2032 .8770 8770 .8737 .8737 .8737 .8737 .8738 .8738 .4587 4587 4240 4240 .4240 .4240 . 4239 4239 B5 -1.1779 -1.1778 -1.1445 -1.1444 -1.1444 -1.1444 -1.1445 -1.1444 -1.1444 TOTAL ANNUAL TRANSMITTED RADIATION QTA1 QTA2 C2 = -.3520 DUE SOUTH AND VERTICAL = 266962 = 223550 OTA3 = 192572 AZIMUTH AND TILT COEF. -.0056 C3 = 1984 = 1.4214 C5 =-1.2271 MONTH: JAN FEB MAR APR MAY JUN JUL DÉC 11 AUG SEP OCT NOV TAVE: 18 37 52 60 65 63 51 44 344 600 OHOR: 993 1415 1790 1882 1955 1645 1083 734 266 MINNEAPOLIS-ST. PAUL, MINNESOTA ELEVATION = 837 LAT = 44.9 TB55 (M=12) 12.51 10.71 TB30 TB40 . TB45 TB50 SOUTH-VERT. (M= 1) TB60 TB65 TB70 TBBO (M=12) (M=12) (M=12) (M≈12) 11.01 9.43 (M=12) 9.84 8.42 7.32 1449 (M=12) 7.45 (M=12) VT 1/00 21.09 17.18 14.48 8.89 29.48 25.62 611 VT2/00 18.06 14.71 12.40 7.61 6.38 VT3/00 15.69 676 2910 12.78 830 10.77 9.31 8.19 6.61 5.54 1914 MONTHLY DD 984 1294 ANNUAL DD 1578 3731 4660 5706 6874 8179 9622 12877 PARAMETER A .524 .769 .646 .710 .919 .824 .874 .959 1.015 AZIMUTH AND TILT COEF. A1 -.0347 -.0062 -.0029 -.0002 .0018
.0034 .0046 .0055 .0065 A2 .3586 .2286 .2502 -.2918 .2416 .2589 .2714 .2874 .3060 .3564 A3 -.2816 -.2785 -.2857 -.3016 -2503 -.0590 -.3181 -.3398 -.3661 -.4395 A4 . 1494 .2576 . 2535 .2502 .2562 -.0570 .2669 2812 .3246 A5 .1165 -.0879 -.0737 -.0642 -.0575 -.0603 -.0730 RI .0127 .0069 .0069 .0069 .0069 .0069 .0069 .0069 .0069 82 -1.1787 -1.1277 -1.1277 -1.1277 -1.1277 -1,1277 -1.1277 -1.1277 -1.1277 .7975 .7975 RЯ .8086 .7975 .7975 .7975 .5297 .7975 .7975 .7975 84 . 56 15 .5297 5297 5297 .5297 5297 5297 85 -1.2117 -1.1361 -1.1361 -1.1361 -1.1361 -1.1361 -1.1361 -1.1361 -1.1360 TOTAL ANNUAL TRANSMITTED RADIATION OTAZ = 229062 -.3695 °C DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTA1 C1 = MAR 27 274061 QTA3 = 197098 .0177 C2 = C3 = -.2190 C4 = 1.5129 C5 = -1.2341 MONTH: JAN FEB APR MAY JUN JUL AUG SEP 0CT 50 NOV DEC TAVE: 10 17 57 47 70 69 61 33 18 OHOR: 461 771 1140 1400 1759 1910 1958 1685 1246 874 468 338 ROCHESTER, MINNESOTA ELEVATION = 1319 £AT = 43.9 TB30 TB40 TB45 TB50 TB55 T860 TB65 TB70 TB80 SOUTH-VERT. (M= 1) (M= 1) 24.29 (M=12) 17.02 14.58 (M=12) (M=12) 14.70 (M=12) (M=12) 11.54 (M=12) (M=12) VT 1/DD 20.20 12.93 10.42 8,72 VT2/DD 32.13 20.80 17.31 12.59 11.08 9.89 8.93 7.47 VT3/00 27.92 18.07 15.04 12.67 9.62 1287 10.94 8.59 7.76 6.49 MONTHLY OD 551 851 823 977 1132 1442 1597 1907 ANNUAL DD 1513 2843 3699 4656 5720 6909 8248 9762 13136 PARAMETER A 591 .578 .600 .646 .687 .727 .766 .803 .841 AZIMUTH AND TILT COEF. .0519 Αl .0478 -. 1105 ~. 1073 -.0984 -.0911 -.0852 -.0803 -.0765 .5146 -.5159 .3323 .0373 .3283 -.2700 .2142 A2 .2110 .5130 .5215 .5325 -.5530 .3555 .5463 -.5797 .5650 .6460 A3 -. 1698 -.5110 ~.5309 -.6143 -.7387 A4 . 1449 .3268 .3417 .3723 .3938 .4705 .0385 .0643 A5 .0381 .0324 .0253 .0167 .0060 -.0216 .0102 Bl .0700 .0700 .0700 .0700 .0700 .0700 .0700 -1.1373 .7654 .5882 -1.1373 B2 -1.1720 -1.1720 -1.1720 -1.1720 -1.1720 -1.1720 -1.1720 .7654 B3 .8318 .5411 .8318 .8317 .8317 .8318 .8318 .8318 B4 .5882 5411 .5411 5411 .5411 5411 .5411 B5 -1.2018 -1.2018 -1.1704 -1.1704 -1.1704 -1.1704 -1.1704 -1.1704 -1.1704 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTAI = 265526 .0254 APR QTA3 = 190907 C2 ≠ MAY 57 C3 = -.2192 JUL AUG C4 = 1.5159 C5 =-1.2220 MONTH: JAN MAR FEB AUG SEP NOV OCT DEC TAVE: 12 477 27 46 66 70 67 57 33 49 18 OHOR: 771 1421 1073 1629 1894 1930 1648 1190 821 486 379 ``` ``` JACKSON, MISSISSIPPI ELEVATION = 331 LAT = 32.3 TB55 TB30 TB40 TB45 TB50 TB65 TB70 TR60 TB80 SOUTH-VERT. (M= 1) (M= 1) 406.53 (M= 1) 38.37 32.64 (Me 1) 21.44 (M=1) (Me 1) (M= 1) (M= 1) (M=1) VT 1/DD 202.20 113.76 50.86 72.43 30.45 18.24 VT2/00 346.98 172.03 61.62 43.27 96.79 25,91 VT3/00 NA 301.36 149.32 84.01 53.49 310 37.56 28,33 22.49 15.84 MONTHLY DD 111 197 64 585 737 441 1047 ANNUAL DD 18 195 413 1851 757 1238 2600 3528 6096 PARAMETER A NA , 423 .507 .592 .626 .638 .644 .654 .704 AZIMUTH AND TELT COEF. NA -.1314 .0782 .0623 .0555 .0519 .0491 0461 .0395 .3217 -.4768 .2650 A2 .6214 .5353 -.7700 . 1448 , 1791 . 2220 .2681 .3825 -.5574 .3116 A3 -.5891 -.2661 -.2995 -.3500 -.4076 A4 .3844 . 1399 .1611 . 1914 .2251 .4327 A5 NA . 1295 -.0744 -.0671 -.0722 -.0780 -.0680 -.0687 -. 1001 .0258 -1.0579 B٦ NA -.0398 -.0398 -.0398 -.0398 -.0398 -.0398 -.0398 B2 NA -.9459 -.9459 -.9459 -.9459 -.9459 -.9459 -.9459 ₿3 NA .6546 .8432 .5445 5445 .5444 .5445 .5445 .5445 .5445 84 NΔ . 9589 9589 . 9589 .9589 9589 9589 .9589 -1.2755 85 NA -1.2445 -1.2445 -1.2445 -1.2445 -1.2445 -1.2444 -1.2445 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA 276008 QTA1 OTA2 197360 = 229661 QTA3 = AZIMUTH AND TILT COEF. .0097 €2 € £3 = 4569 C4 = 1.8177 C5 ±-1 1697 MONTH: MAR 55 MAY 72 JAN FEB APR JUL AUG 79 SEP NOV 54 JUN OCT DEC 49 46 65 TAVE: 78 80 75 65 46 1067 1376 194B OHOR: 731 1731 1921 1860 1801 1535 1287 890 735 ELEVATION = MERIDIAN, MISSISSIPPI 308 LAT = 32.3 TB30 TB40 TB45 TB50 TB70 TB60 T865 T855 TB80 (M=]} 291.61 SOUTH-VERT. (M= 1) (M= 1) 100.17 85.19 (M= 1) 65.57 55.77 (M= 1) 46.94 (M=1) (M=1) 35.82 (M= 1) 28.71 (M=1) VT1/00 1818.97 168.85 20.45 VT2/DD 1534.40 245.99 142.43 24.41 21.19 768 17.39 39.92 30.46 26.44 48.40 336 VT3/00 1328.76 213.02 123.35 73.94 34.65 15.10 MONTHLY DD 128 220 615 469 ANNUAL DD 30 243 474 825 1950 3747 1309 2763 6402 PARAMETER A . 465 .391 .534 .503 .563 .604 .624 .630 .659 AZIMUTH AND TILT COEF. -.0372 -.0224 -.5640 .5654 A1 -.0298 .0100 .0056 .0016 -.0020 -.0057 -.0119 A2 A3 -.6074 -.6353 .3082 .3093 .3233 .3613 .4294 .6033 .6012 -. 4894 . 66 19 -.4058 -.4311 -.4335 -.5857 -.8344 A4 -.4311 -.3772 -.4065 .2666 .2646 .2769 .3110 .3677 .5054 -, 1006 A5 -.0828 -.0889 -.0534 -.0214 . 0359 -.0383 -.0436 -.0656 -.0940 Rì .0389 .0389 .0389 .0214 .0214 .0214 .0214 .0214 -.6892 82 -.6891 -.6892 -.9233 -.9233 -.9233 .9233 . 9233 . 9234 83 .2072 .2072 1.2607 -1.2467 .2072 .5290 .5290 .5290 .5290 .5290 .5290 84 1.2607 1.2607 .9562 .9562 9562 9562 9562 -1.2467 -1.2288 B5 -1.2467 -1.2288 -1.2288 -1.2288 -1,2288 -1.2288 TOTAL ANNUAL TRANSMITTED RADIATION OTAL = DUE SOUTH AND VERTICAL 262790 QTA3 = 187738 1.8288 AZIMUTH AND TILT COEF. 0128 C2 = C3 = -.4867 C4 = C5 =-1 NOV 1317 SEP MONTH: JAN MAR APR MAY ĴŨL JUN AUG OCT DEC TAVE: 45 47 55 65 78 79 74 80 62 53 47 728 1312 QHOR: 996 1721 1831 1957 1879 1815 1470 873 1203 698 COLUMBIA, MISSOURI ELEVATION = 886 LAT = 38.8 TB30 TB40 TB45 TB50 TB70 TBS5 TB60 TB65 TB80 (M= 1) 133.67 SOUTH-VERT. (M= 1) 62.99 (M= 1) 35.52 (M= 1) 47.29 (M= 1) 17.12 (H= 1) (M= 1) (M= 1) (M=1) VT 1/00 VT2/00 28.14 24.08 23.22 19.87 19.72 13.55 114.29 53.85 40.43 30.40 16.88 11.60 14.65 46.77 361 26.41 567 20.92 716 17.27 867 VT3/00 99.27 35.12 12.73 10.07 14.66 MONTHLY DD 481 170 1021 1486 ANNUAL DD 437 1185 1750 2437 3243 4178 5263 6520 9546 PARAMETER A 466 . 465 . 465 . 525 .572 .608 .681 .730 .646 AZIMUTH AND TILT COEF. AT .0336 AZ .2676 .0559 .0668 .0929 .0899 .0880 .0853 .0825 .0789 .4044 .5925 -.6029 .7575 -.9072 .4653 -.5042 .5942 .6099 .6254 .6511 -.4362 A3 -.2897 -.6187 -.6835 -.6505 -.7319 .2785 .0256 . 1446 .2377 A4 .4610 .4603 .4710 .4817 .5016 5875 .0202 A5 .0250 .0050 -.0036 0130 -.0258 ~ 0643 -.0359 -.0359 -.0441 81 -.0359 -.0441 -.0441 -.0441 -.0441 -1.1645 .8089 -1.1645 .8089 -1.1645 -1.1645 B2 -1.1360 -1.1360 -1.1360 -1.1645 -1.1645 .7560 .7559 .7578 .7559 .8089 .8088 83 .8098 .8089 84 7578 1578 6755 6755 6755 6755 6755 .6755 B5 -1.2303 -1.2303 -1.2303 -1.2061 -1.2061 -1.2061 -1.2061 -1.2061 -1.2061 TOTAL ANNUAL TRANSMITTED RADIATION OTA1 281039 DUE SOUTH AND VERTICAL QTA3 = 201080 = AZIMUTH AND TILT COEF .0054 C2 × C3 = -.3695 C4 = 1.7232 C5 =-1.2628 JAN 31 APR 55 MONTH: FEB MAR MAY JUN JUL AUG SEP OCT NOV DEC 32 TAVE: 32 40 65 73 76 75 56 66 45 QHOR: 610 808 1553 1160 1986 1996 2110 1866 1446 1097 710 510 ``` ``` SPRINGFIELD, MISSOURI ELEVATION = 1270 LAT = 37.2 TB40 TB30 TB45 TB55 T850 TB60 T865 TB70 TB80 (M= 1) 317.02 SOUTH-VERT. (M= 1) 104.58 (M= 1) 69.95 (M≠ 1) 51.34 (M=1) (M= 1) 27.34 23.34 (M=1) (M= 1) (M=3) VT1/DD 32.64 27.87 40.09 23.47 18.30 VT2/DD 271.43 89.31 77.56 246 59.73 43.84 34.23 20.05 15.63 VT3/DD 235.85 51.88 38.07 29.73 24.20 20.27 17.41 13.57 MONTHLY DD 82 368 502 643 789 942 1407 ANNUAL DD 258 889 1403 2054 2833 3741 4790 6016 9025 PARAMETER A .356 .404 . 463 .477 .482 .486 . 493 .506 .518 AZIMUTH AND TILT COEF. .0327 A١ .0061 .0049 .0047 .0044 .0039 .0039 .0047 .0095 1.0569 .4156 -.4825 A2 .4271 4658 .5352 .6089 .6864 .7663 1.0067 A3 -.9508 -.4909 -.7247 -.5460 -.6326 -.8266 -.936B -1.2786 A4 .6098 .3751 .3605 -.0025 .3966 4470 .5002 .5565 -6143 .7992 A5 . 1827 .0011 -.0172 -.0056 -.0085 -.0110 -.0270 -.0685 -.0469 -.0493 -.0469 -.0469 -.0469 -.0469 -.0469 -.0469 -.0469 -1.0616 -1.0616 -6645 В2 -1.1727 -1.0616 -1.0616 -1.0616 -1.0616 -1.0616 -1.0616 .6645 ₿3 .6645 .6645 .6645 .6645 .6645 .6645 В4 .6910 .7808 .7808 7808 7808 .78QB .780B .7808 _780R 85 1.2618 -1.2611 -1.2611 -1.2611 -1.2611 -1.2611 -1.2611 -1.2611 -1.2611 TOTAL ANNUAL TRANSMITTED RADIATION QTA2 = 239841 C2 = -.2531 DUE SOUTH AND VERTICAL OTA1 = 287976 QTA3 = 206019 AZIMUTH AND TILT COEF 4050 0424 C4 = 1.7284 C5 ≂-1 2426 MONTH: JAN MAR APR MAY JUN 0CT 56 JUL AUG 75 SEP NOV DEC TAVE: 34 36 42 65 72 77 68 47 690 OHOR: 900 1243 1625 1869 2060 2105 1956 1483 1007 790 617 ST. LOUIS, MISSOURI ELEVATION = 564 LAT = 38.8 1830 TB40 TB45 T850 TB55 TB60 TB65 TB70 TB80 SOUTH-VERT. (M= 1) 179.56 (Mm 1) 45.41 (M= 1) 64.37 (M= 1) 34.17 (M= 1) (M= 1) \{M=1\} (M= 1) 16.34 13.97 (Mr 1) VT 1/00 27.05 23.13 18.84 16.11 12.92 55.04 47.81 297 1068 VT2/00 153.42 38.83 29.22 19.01 11.05 VT3/00 133.25 20.09 12.14 33.73 25.38 16.51 13.99 9.59 MONTHLY DD 139 421 559 707 1015 860 1480 ANNUAL DD 385 2290 1617 3093 4020 5069 6257 9181 PARAMETER A . 196 .510 .575 .626 .663 .722 .695 .748 . 805 AZIMUTH AND TILT COEF. -.0490 .0902 .0825 .0789 .0786 .0782 .0780 .0775 .0753 A2 .7140 . 4463 .4572 .4554 .4712 .4608 .4925 .5196 .5892 A3 -.6085 -.4048 -.4429 -.4333 -.4830 -.4595 -.5203 -.5660 -. 6R47 A4 .3303 .3478 .3571 .3574 .3642 .3751 3944 .4184 .4813 A5 . 23 16 .0123 .0078 .0038 -.0016 -.0084 -.0168 -.0546 -.0267 -.0523 -1.0761 B 1 .0838 -.0838 -.0838 -.0838 -.0838 -.0838 -1.0984 .0838 .0838 R2 -1.0984 -1.0984 -1.0984 -1.0984 -1.0984 -1.0984 -1.0984 .7240 B3 .6852 .7240 .7240 .7240 .7240 .7240 .7240 .7240 B4 7408 .6684 6684 6684 6684 6684 66R4 6684 6684 -1.2289 B5 -1.1894 -1. 1894 -1.1893 -1.1894 -1.1894 -1.1893 -1.1893 -1.1893 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL = 282726 QTA1 QTA3 = 202275 AZIMUTH AND TILT COEF. C2 = May 0246 C3 = -.3767 C4 = 1.7012 C5 ≈-1. 2279 MONTH: JAN FEB MAR APR JUN JUL AUG SEP NOV 007 DEC TAVE: 32 56 33 41 66 74 78 76 58 69 43 32 QHOR: 665 866 1223 1578 1862 2130 2119 1884 1403 1063 701 492 BILLINGS, MONTANA ELEVATION = 3570 LAT = 45.8 TB40 (M= 1) 39.09 33.57 TB30 TB45 T850 TB55 TB60 TB65 TB70 TB80 SOUTH-VERT. (M= 1) /DD 65.77 (M= 1) 31.4] (M= 1) 25.93 22.27 (M= 1) 22.02 (M= 1) (M= 1) 15.14 (M= 1) (M= 1) 12.53 10.76 VT1/00 19. 13 16.90 VT2/00 56.49 26.98 14.52 12.62 1334 13.01 18.91 16.43 23.45 718 49.11 343 29.
19 577 VT3/00 19.36 869 16.44 14.28 9.36 1799 MONTHLY DO 1024 1179 1489 ANNUAL DD 1011 2078 2844 3781 4865 6096 7464 8960 12234 PARAMETER A 558 .641 .652 .664 .681 .700 .718 .731 AZIMUTH AND TILT COEF. -.0232 -.0066 A١ -.0003 .0052 .0096 .0130 0155 .0175 .0211 A2 . 4369 .5529 .6261 .6848 .7303 .1722 .8166 . 866 1 1.0005 A3 -.3250 .2406 .1219 -.7156 .4716 -.4508 -.5298 -.5969 -.6551 -.7829 -5119 ~.8581 -1.0497 A4 .3145 .3616 .4013 .4356 . 5574 .6746 A5 . 1343 1357 . 1315 . 1209 . 1064 .0895 .0538 -.0098 -1.2784 -9134 81 -.0098 -.0098 .0098 -.0098 .0098 -.0098 -0098 -.0098 B2 -1.2784 -1.2784 -1.2784 .9134 -1.2784 -1.2784 -1.2784 -1.2784 -1.2784 B3 .9134 .9134 .9134 .9134 .9134 .9134 .4570 .9134 B4 .4570 .4570 .4570 4570 4570 .4570 4570 4570 R5 -1.2176 -1.2176 -1.2176 -1.2176 -1.2177 -1.2176 -1.2176 -1.2176 -1.2176 TOTAL ANNUAL TRANSMITTED RADIATION QTA2 = 272347 C2 = -.3867 DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTA1 325458 QTA3 = 234387 .0190 C3 = -.2307 C4 = 1.5110 C5 =-1 3074 APR 42 MAY 56 MONTH: JAN 23 FEB 27 MAR 33 JUN JUL 72 AUG 72 DEC 21 SEP 59 OCT 51 NOV TAVE: 63 36 QHOR: 496 757 1145 1508 1863 2281 2333 2065 1473 1006 570 420 ``` | CUT BANK, MOI | NTANA | | | | ELEVATIO | N = 3839 | | L/ | AT = 48.6 | |---|----------------------|--|--|---------------------------|---|---|---|---------------------------|------------------------------| | SOUTH-VERT | TB30
(M= 1). | TB40
(M≈ 1) | TB45
(M= 1) | TB50
(M= 1) | TB55
(M= 1) | TB60
(M= 1) | TB65 | /M 11 | TB80
(M= 1) | | VT 1/DD | 42.60 | (M= 1)
28.48
24.48
21.29
642
2884
.669 | (M= 1)
23.81
20.46
17.79
768
3810
.696 | (M≈ 1)
20.02
17.21 | (M= 1)
17.16
14.75
12.82
1065
6180 | (M= 1)
14.99
12.88 | TB65
(M= 1)
13.30
11.43
9.94 | 11.95 | 9.94
8.54
7.43
1839 | | VT3/DD | 31.80 | 21,29 | 17.79 | 14.96 | 12.82 | 11.20 | 9.94 | 8.93 | 7.43 | | MONTHLY DD
ANNUAL DD | 31.80
514
1571 | 642
2884 | 768
3810 | 913
4914 | 1065
6 180 | 1219
7597
.825 | 1374
9135 | 1529
10772 | 1839
14257 | | PARAMETER A
AZIMUTH AND | .588 | .669 | .696 | 4914
.741 | .786 | . 825 | . 853 | .868 | .870 | | A1 | .0005 | .0125 | .0121 | .0108 | .0095 | .0083 | .0075 | .0070 | .0068 | | SA
EA | . 1881
1771 | .4810
3681 | .5378
4362 | .5655
4831 | .5882
5272 | .6151
5770 | .6525
6382 | .7018
7124 | .8250 | | A4 | . 1138 | .2863 | .3236 | .3456 | .3664 | .3916 | . 4249 | .4670 | 8844
.5682 | | A5
B1 | .0352
.0029 | . 1006
0007 | . 1008
0007 | .0923
0007 | .0810
0007 | .0679
0007 | .0538
0007 | .0395
0007 | .0125
0007 | | B2
B3 | -1.2598
.8996 | -1.3062
.9511 | -1.3062
-9511 | -1.3062 | -1.3062
-9511 | -1.3062 | -1.3062 | -1.3062 | -1.3062 | | 84 | . 4547 | .3932 | .3932 | .9511
.3933 | .3933 | .9511
.3932 | .9511
.3932 | .9511
.3933 | .9511
.3933 | | B5
TOTAL ANNUAL | -1.2103
TRANSMITT | ~1.1940
ED RADIATION | | -1.1 94 1 | -1.1 94 1 | -1.1940 | -1.1941 | -1.1941 | -1.1941 | | DUE SOUTH AN | ND VERTIC | AL OTAT | = 318994 | 22 412 | QTA2 = 2674 | 146 | QTA3 = 2
C4 = 1.4216
SEP OCT
52 46
1349 894 | 30418 | | | MONTH: | JAN | r. UI∓
FEB MAR | .0064
APR | C2 =4133
MAY JUN | 3 C3 =
¥ J UL | 1864
AUG | C4 = 1.4216
SEP OCT | C5 =-1.
NOV | . 2990
DEC | | TAVE:
OHOR: | 15 | 21 29
686 1124 | 38 | 49 58
1863 2019 | 3 C3 F
N JUL
B 64
9 2330 | 63
1922 | 52 46
1349 894 | 29
476 | 20
322 | | Q. G. I | -11- | 1,24 | 1470 | 1005 2013 | 2000 | 1722 | 1043 054 | 470 | 322 | | | | | | | | | | | | | DILLON, MONTA | ANA
TB30 | TB40 | TB45 | TB50 | ELEVATIO
TRSS | ON = 5210
TR60 | TB65
(M= 1)
18.19
15.62
13.58
1332 | TB70 | AT = 45.3
TB80 | | SOUTH-VERT. VT1/DD VT2/DD VT3/DB MONTHLY DD ANNUAL DD PARAMETER A ATIMUTH AND | . (M= 1) | (M= 1) | (M= 1) | (M= 1) | (Mz 1) | (M± 1) | (M= 1) | (M= 1) | (M= 1) | | VT2/00 | 67.56 | 36.65 | 29.20 | 24.01 | 20.36 | 17.68 | 15.62 | 16.29 | (M= 1)
13.48
11.58 | | VT3/DB
MONTHLY DD | 58.72
328 | 31.86
605 | 25.39
713 | 20.87
867 | 17.71 | 15.37 | 13.58 | 12.17
1487 | 10.07
1797 | | ANNUAL DD | 1030 | 2374 | 3311 | 867
4404
.649 | (M≠ 1)
23.71
20.36
17.71
1022
5655
.667 | (M± 1)
20.59
17.68
15.37
1177
7058
.680 | 1332
8581
.684 | 10173 | 13644 | | AZIMUTH AND | III COL | | | | | | .684 | .679 | .648 | | A1
A2 | 0615
.3567 | 0564
.4773 | .0752
.7300
6436 | .0747
.7832 | .0753
.8444 | .0764
.9125 | .0786 | .0821
1.0959 | .0918
1.3404
-1.4822 | | A3 | 3549 | 4668 | 6436 | 7190 | 8051 | _ 9037 | -1.0220 | -1.1588 | -1.4822 | | A4
A5 | .2073 | .2002 | . 4340 | .4769
.1239 | .5268
.1109 | .5841
.0933 | .6539
.0732 | .7355
.0530 | .9308
.0126 | | 81
82 | .0304
-1.2332 | .0304
-1.2332 | 0158
-1.2863 | 0158
-1.2863 | 0158
-1.2863 | 0158
-1.2863 | 0158
-1.2863 | 0158
-1.2863 | 0158 | | B3 | . 8526 | .8526 | .9186 | -1.2003
.9186 | .9186 | -1.2863
-9186 | -1.2663
.9186
.4692 | -1.2863
.9186
.4692 | -1.2863
.9186 | | 84
85 | .5382
-1.2354 | .5382
-1.2354 | .9186
.4692
-1.2270 | .9186
.4692
-1.2270 | .4692
-1.2270 | .9186
.4692
-1.2270 | .469 2
-1.2270 | . 4692
-1.2270 | .4692
-1.2270 | | TOTAL ANNUAL 1 | TRANSMITT | FO RADIATION | | | | | | | | | AZIMUTH AND | TILT COE | AL OTA1
F. C1 =
FEB MAR | .0620 | C2 = ~.3724 | 1 C3 = | 262 6 | C4 = 1.5403 | 39391
C5 =-1. | .3243 | | MONTH:
TAVE: | JAN 1 | FEB MAR
26 29 | APR
40 | MAY JUN
50 59 | V JUL | AUG
64 | SEP OCT | NOV
3.4 | DEC | | QHOR: | 527 | 26 29
797 1264 | 1570 | 50 58
2064 2203 | 3 2401 | 2038 | QTA3 = 2
C4 = 1.5403
SEP OCT
53 44
1521 970 | 585 | 452 | | | | | | | | | | | | | GLASGOW, MONT | rana . | | | | ELEVATIO | N = 2297 | | U | AT = 48.2 | | SOUTH-VERT. | TB30 | TB40
(M= 1) | T845
(M= 1) | TB50
(M≠ 1) | TB55 (M= 1) | TB60 | TB65 TB7
(M= 1) | O TB80 | (M= 1) | | VT 1/00 | 34.73 | 22.37 | 18.81 | 16.22 | 14,26 | 12.72 | 11.48 | 10,46 | 8.89 | | V12/00
V13/00 | 29.77
25.87 | 19.18
16.67 | 16.12
14.01 | 13.90
12.08 | 12.22
10.62 | 10.90
9.48 | 9.84
8.55 | 8.97
7.79 | 7.62
6.62 | | MONTHLY DD
ANNUAL DO | 526
1864 | 817
3285 | 971 | 1127 | 1282 | 1437 | 1000 | | 2057 | | PARAMETER A | .733 | .719 | 4180
.730 | 5188
.751 | 6329
.777 | 7589
. 805 | 8984
. 83 3 | 10508
.858 | 13825
.886 | | AZ IMUTH AND
A I | 0275 | f.
0276 | 0 272 | 0267 | ~.0260 | 0255 | 0248 | 0242 | 0235 | | A2 | .2300 | . 2690 | . 2905 | .3103 | .3294 | .3496 | .3720 | .3983 | . 4730 | | A3
A4 | 2562
.1729 | 3033
.2055 | 3274
.2224 | 3498
-2378 | 3717
.2526 | 3960
.2684 | 4247
.2864 | 4603
. 3079 | 5632
.3700 | | AS
81 | 0236
.0348 | 0295 | 0304 | 0308 | 0313 | 0325 | 0353 | 0400 | 0555 | | 82 | -1, 1869 | .0348
-1.1869 | 83
84 | .8389
.4912 | .8389
.4913 | .8389
.4912 | .8389
.4913 | .8389
.4913 | .8389 | .8389
.4912 | .8389
.4912 | . 8389
. 4913 | | B5 | -1.1670 | -1.1670 | -1.1670 | -1.1670 | -1.1671 | .4912
-1.1670 | -1.1670 | -1.1670 | -1.1671 | | TOTAL ANNUAL 1
DUE SOUTH AN | NO VERTICA | AL QTA1 | = 307828 | |)TA2 = 2580 | | QTA3 = 2 | 22288 | | | AZIMUTH AND | TILL COE | F. Cla | .0304 | C2 =4065 | C3 = | 1726 | C4 = 1.4195 | C5 =-1. | | | TAVE: | 13 | 15 26 | APR
38 | MAY JUN
55 65 | 72 | AUG
68 | SEP OCT
58 45 | NOV
27 | DEC
18 | | QHOR: | 393 | 694 1127 | | 1904 2009 | | | 1324 887 | | 328 | ``` GREAT FALLS, MONTANA ELEVATION = 3661 LAT = 47.5 TB30 TR40 TB45 TB50 TB55 TB60 T065 TB70 TB80 SOUTH-VERT. (M= 1) (M= 1) 28.54 (M= 1) 23.87 20.47 (M= 1) 17.64 (M=1) (M=1) (M= 1) 15.58 (M= 1) 13.94 (M= 1) 11.53 VT 1/00 34.61 52.28 20.33 VT2/DD 44.83 29.68 24.48 17.43 15.13 13.36 9.89 25.80 595 VT3/00 38.97 21.28 17.79 15.15 13.15 11.63 10.39 8.59 MONTHLY DD 394 722 - 864 1014 1168 1323 1478 1788 ANNUAL DD 1126 2183 2940 3877 4994 6272 7697 9239 12598 PARAMETER A .798 .812 .797 .781 .779 .784 .791 .794 .781 AZIMUTH AND TILT COEF. -.0708 -.0524 -.0482 -.0436 A1 -.0578 -.0390 -.0348 -.0313 ~.0259 .3271 .3885 -.3562 .2332 . 4496 .5000 .5451 -.5433 .3392 .5924 .6470 .7853 A3 -. 1891 -. 4239 -.4841 -.6087 -.6845 -.8717 A4 . 1097 . 1748 .2179 .2616 .3009 .4293 .3611 .5479 A5 .0658 .0680 .0693 .0697 .0661 .0583 .0473 .0343 .0054 в1 .0224 .0224 0224 0224 0224 .0224 .0224 .0224 0224 В2 -1.2032 -1.2032 -1.2032 -1.2032 -1,2032 -1.2032 -1.2032 -1.2032 -1.2032 ВЗ .8509 .0509 .8509 .8509 .0509 .8509 .8509 .8509 .8509 R4 494R 4949 4949 .4948 . 4949 . 4949 .4949 4949 494R R5 -1.2043 -1.2043 -1.2043 -1.2043 -1.2043 -1.2043 -1.2043 -1.2043 -1.2043 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI OTA1 C1 = 312480 QTA2 = 261571 OTA3 = 225209 AZIMUTH AND TILT COEF. MONTH: JAN FE 0431 C2 = -.3796 C3 = -.2111 C4 = 1.4754 C5 =-1. 2967 FEB 26 717 MAR 32 APR 42 MAY 53 JUN JUL SEP CCT NOV AUG DEC TAVE: 22 62 71 66 57 44 1155 420 1515 2375 OHOR: 2088 1805 1931 1352 906 504 354 HELENA, MONTANA ELEVATION = 3898 LAT = 46.6 TB30 TB40 TB45 TB50 TB60 TB65 TB70 T855 TB80 SOUTH-VERT. (M= 1) 1/DD 47.13 (M= 1) 28.35 (M= 1) 22.93 (M= 1) 19.21 16.46 (M= 1) 16.52 14.15 (M= 1) 14.50 (M= 1) 12.91 11.06 (M= 1) 11.64 (M= 1) VT 1/00 9.60 VT2/00 40.37 24.29 19.64 12.42 9.97 8.66 1573 8.23 7.15 1778 17.07 798 9.61 VT3/DD 35.08
21.10 14.30 12.30 10.79 MONTHLY DD 389 646 953 1108 1263 1058 ANNUAL DD 2253 3124 4154 5334 6673 8148 9725 13118 ARAMETER A .656 AZIMUTH AND TILT COEF. A1 .0276 A2 .0973 .755 PARAMETER A .877 .783 .807 .830 .852 .868 .087 0262 .0252 .0236 .3236 -.3656 .0226 .0243 .0230 .0186 . 1857 -. 2055 .2334 -.2597 .2801 .3667 .4122 .4618 .7086 A3 -. 1137 -. 4204 -.3137 -.4807 -.5476 -. 1857 A4 .0776 . 1387 . 1737 .2083 .2414 .2760 .3141 .3563 .5167 A5 -.0088 -.0069 -.0056 -.0089 -.0121 -.0183 -.0273 -.0385 -.0184 Bì -.0033 -.0033 -.0033 -.0033 -.0033 -.0033 -.0033 -.0033 -.0009 B2 -1.1561 -1.1561 -1.1561 -1.1561 -1.1561 -1.1561 -1.1561 -1.1561 -1.2253 .8059 B3 .8058 .8059 .8059 .0059 .8059 .8059 .8058 .8795 ₿4 5367 5367 .5367 .5367 5367 5367 5367 5367 4664 B5 -1.1690 -1.1690 -1.1690 -1.1690 -1.1690 -1.1690 -1.1690 -1.1690 -1.1684 TOTAL ANNUAL TRANSMITTED RADIATION QTA2 = 253030 -.3607 C3 = DUE SOUTH AND VERTICAL 302571 QTA1 QTA3 = 217741 AZIMUTH AND TILT COEF Čl = C2 = .0260 C3 = -.2433 C4 = 1.5198 C5 =-1.2899 MONTH: JAN FEB MAR APR MAY JUN JUL AUG SEP NOV OCT DEC TAVE: 19 27 32 41 53 60 66 22 46 OHOR: 416 688 1111 1437 1873 2017 2337 1944 1465 928 LEWISTOWN, MONTANA ELEVATION = 4147 LAT = 47,1 TB50 (M= 1) 21.00 TB30 TB40 TB45 T855 (M= 1) 17.88 TB65 TB70 TB60 TB80 (M= 1) 31.43 (M= 1) 25.38 21.77 SOUTH-VERT. (M= 1) (M= 1) 15.55 (M= 1) 13.76 (M= 1) 12.34 (M=1) VT1/00 VT2/00 50.09 10.23 8.78 26.96 23.43 42.96 18.01 15.33 13.34 11.80 10.59 37.34 370 VT3/00 18.92 10.26 15.66 13.33 11.59 9.20 7.63 MONTHLY DD 590 883 730 1192 1502 1812 1063 ANNUAL DD 2249 3136 4207 5440 6832 8344 9954 13394 PARAMETER A .848 .819 .810 .806 .832 .816 .856 .856 .836 AZIMUTH AND TILT COEF. .0766 .2326 .0914 .0958 .0969 .0962 .0949 .0942 .0944 .0971 .3497 .40B4 .4543 .5381 .6481 -.7295 .7862 -.9149 .4947 .5890 EA -. 1908 -.3266 -.3981 -.4584 -.5145 -.5761 -.6478 .2222 .0544 -.0206 -1.2104 . 1429 A4 A5 .2642 -2989 .3311 .3666 .4084 .4567 .5681 .0548 .0514 .0453 .0373 .0275 0160 -.0211 .0037 -.0206 -1.2104 Bì -.0206 .0206 -.0206 -1.2104 -.0206 -1.2104 -.0206 -1.2104 -.0206 -.0206 B2 -1.2104 -1.2104 .8547 -1.2104 -1.2104 .8547 83 .8547 .8548 .8547 .4979 .8547 .8547 .8547 .8547 .4979 -1.1940 . 4979 84 .4979 .4979 .4979 4979 4979 4979 85 -1.1940 -1, 1940 -1.1940 -1.1940 -1.1940 -1.1940 -1.1939 -1.1940 QTA3 = 216400 C4 = 1.4800 CF TOTAL ANNUAL TRANSMITTED RADIATION QTA2 = 251370 C2 = -.3630 C2 DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTAT 300335 C3 ≃ -.2343 JUL AUG .0626 C5 =-1.2803 JAN 21 FEB 23 MAR 30 MONTH: MAY JUN APR AUG 0CT NOV DEC TAVE: 39 50 58 64 67 54 34 28 QHOR: 384 654 1115 1437 1776 2009 2308 1877 1364 929 508 371 ``` | MILES CITY, MONTANA TB30 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 42.82 28.32 VT2/DD 36.74 24.30 VT3/DD 31.94 21.12 MONTHLY DD 532 804 ANNUAL DD 1529 2800 PARAMETER A .654 .693 AZIMUTH AND TILT COEF. | TB45 (M= 1) 23.82 20.44 17.77 956 3655 .700 | TB50
(M= 1)
20.51
17.60
15.30
1110
4630
.705 | ELEVATION = 2635
TB55 TB60
(M= 1) (M= 1)
18.00 16.03
15.44 13.76
13.42 11.96
1265 1420
5717 6923
.712 .721 | (M= 1)
14.46
12.40
10.78
1575
8259 | LAT = 46.4
TB70 TB80
(M= 1) (M= 1)
13.16 11.16
11.29 9.58
9.82 8.32
1730 2040
9715 12940
.745 .754 | |--|--|--|---|--|--| | A1 .0869 .0855 A2 .2404 .3230 A3 -2071 -3062 A4 .1178 .1776 A5 .0421 .0391 B100650065 B2 -1.2335 -1.2335 B3 .8646 .8646 B4 .5060 .5060 B5 -1.2140 -1.2140 | .0856
.3783
3686
.2155
.0397
0065
-1.2335
.8647
.5060
-1.2140 | .8646
.5060 | .0842 .0822
.4853 .5354
-4928 .5539
.2912 .3287
.0379 .0344
00650065
-1.2335 -1.2335
.8646 .8647
.5060 .5060
-1.2140 -1.2140 | .5835
6152
.3663
.0289
0065
-1.2335
.8646
.5060 | .0769 .0736
.6326 .7472
-6801 -8349
.4060 .5004
.02100009
00650065
-1.2335 -1.2335
.8646 .9646
.5060 .5060
-1.2140 -1.2140 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA AZIMUTH AND TILT COEF. C1- MONTH: JAN FEB MAR TAVE: 14 18 31 QHOR: 460 749 1141 | 1 = 325433 | 077/
C2 =4029
MAY JUN
54 66
1890 2153 | A2 = 272494
C3 =2084
JUL AUG
76 74
2300 2001 | QTA3 = 2
C4 = 1.4771
SEP OCT
59 48
1485 978 | 34589
C5 =-1.3071
NOV DEC
32 21
573 386 | | MISSOULA, MONTANA TB30 SOUTH-VERT. (M= 1) VT1/OD 48.22 21.16 VT2/DD 41.17 18.06 VT3/OD 35.74 15.68 MONTHLY DD 231 431 ANNUAL DD 547 1770 PARAMETER A 702 .867 | TB45
(M=12)
15.56
13.28
11.53
586
2681
.950 | TB50
(M=12)
12.30
10.50
9.12
741
3765
1.018 | ELEVATION = 3189
TB55 TB60
(M=12) (M=12)
10.17 8.67
8.68 7.40
7.54 6.43
896 1051
5012 6409
1.076 1.126 | (M=12)
7.56
6.45
5.60
1206
7925 | LAT = 46.9
TB70 TB80
(M=12) (M=12)
6.70 5.45
5.72 4.66
4.96 4.04
1361 1671
9541 12977
1.191 1.220 | | AZIMUTH AND TILT COEF. A10660 .0745 A2 .0480 .0944 A303541155 A4 .0031 .1155 A5 .03180407 B1 .01010754 B2 -1.01079956 B3 .7003 .7169 B4 .6127 .5644 B5 -1.0783 -1.0278 | .0662
.1146
1386
.1287
0398
0754
9996
.7168
.5644
-1.0278 | .0608
.1315
1598
.1409
0409
0754
9996
.7168
.5644
-1.0278 | .0567 .0536
.1458 .1601
-1795 -2006
.1519 .1639
-0435 -0476
-07540754
99969996
.7168 .7168
.5644 .5644 | . 1764
2255
. 1785
0535
0754
9996
. 7168
. 5644 | .0508 .0507
.1951 .2352
25403144
.1959 .2337
06050759
07540754
99959996
.7168 .7168
.5644 .5644
-1.0279 -1.0279 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA AZIMUTH AND TILT COEF. C1: MONTH: JAN FEB MAR TAVE: 23 31 34 QHOR: 313 586 976 | = 255076 | 077
C2 =2265
MAY JUN
52 59
1716 1981 | A2 = 212669
C3 =3640
JUL AUG
67 65
2312 1875 | QTA3 = 1
C4 = 1.6089
SEP OCT
54 42
1348 804 | 82836
C5 =-1.2390
MDV DEC
34 26
389 260 | | GRAND ISLAND, NEBRASKA T830 T840 SOUTH-VERT. (Me 1) (Me 1) VT1/DD 82.08 48.03 VT2/DD 70.31 41.14 VT3/DD 61.10 35.75 MONTHLY DD 363 620 ANNUAL DD 911 1989 AZIMUTH AND TILT COEF. | TB45
(M= 1)
38.94
33.35
28.99
765
2717
.539 | T850
(M= 1)
32.52
27.86
24.21
916
3565
.545 | ELEVATION = 1857
TB55 TB60
(M= 1) (M= 1)
27.84 24.32
23.85 20.83
20.73 18.10
1070 1225
4535 5616
.550 .553 | (M= 1)
21.59
18.49
16.07
1380
6829 | T870 T880 (M= 1) (M= 1) 19.4) 16.15 16.63 13.83 14.45 12.02 1535 1845 8189 11307 .567 .557 | | A1 .0586 .0782 A2 .1525 .3400 A310012850 A4 .1324 .2536 A5 .0098 .0289 B104380438 B2 -1.1710 -1.1710 B3 .7477 .7477 B4 .6393 .6394 B5 -1.2747 -1.2748 TOTAL ANNUAL TRANSMITTED RADIATIO | .0822
.4106
3616
.3005
.0320
0438
-1.1710
.7477
.6394
-1.2748 | .7477
.6394 | .0860 .0864
.5573 .6353
-53676337
.4043 .4615
.0266 .0206
-04380438
-1.1710 -1.1710
.7477 .7477
.6394 .6394
-1.2748 -1.2748 | .7156
7398
.5224
.0100
0438
-1.1710
.7477
.6394 | .0834 .0824
.8055 1.0592
8629 -1.2098
.5920 .7923
00500498
04380438
-1.1710 -1.1710
.7477 .7477
.6394 .6393
-1.2748 -1.2747 | | DUE SOUTH AND VERTICAL OTA | = 323891
= -,0207
APR
48
1715 | OTA
C2 =3303
MAY JUN
61 70
1993 2183 | A2 = 270409
C3 =3305
JUL AUG
76 73
2182 1928 | QTA3 = 2:
C4 = 1.6264
SEP OCT
63 53
1464 1124 | 32417
C5 =-1.3235
NOV DEC
39 25
699 564 | | NORTH PLATTE, NEBRASKA TB30 TB40 SDUTH-VERT. (M= 1) (M= 1) VT1/DD 85.52 50.7 VT2/DD 73.25 43.4 VT3/DD 63.65 37.7 MONTHLY DD 368 62 ANNUAL DD 972 216 PARAMETER A .755 .62 AZIMUTH AND TILT COEF. | (M= 1)
2 41.05
4 35.16
5 30.55
1 767
8 2958 | T850
(M= 1)
34.26
29.34
25.50
920
3871
.563 | ELEVATION
T855
(M= 1)
29.35
25.13
21.84
1073
4900
.552 | = 2785
TB60
(M= 1)
25.65
21.97
19.09
1228
6048
.551 | TB65
(M= 1)
22.78
19.51
16.95
1383
7336
.553 | LAT = 41.1
TB70 TB80
(M= 1) (M= 1)
20.48 17.05
17.54 14.60
15.24 12.69
1538 1848
8768 11987
.553 .527 | |--|---|--|--|--|--|--| | A10443062 A2 .2154 .413 A32391454 A4 .1323 .261 A5 .0187 .034 B1 .0092 .009 B2 -1.1660 -1.166 B3 .7662 .766 B4 .6449 .644 B5 -1.2778 -1.277 TOTAL ANNUAL TRANSMITTED RADIAT | 11 | .7661
.6449 |
0704
.6757
7523
.4451
.0392
.0092
~1.1660
.7661
.6449
-1.2778 | 0696
.7501
8439
.5021
.0333
.0092
-1.1660
.7662
.6449
-1.2778 | 0684
.8318
9509
.5683
.0208
.0092
-1.1660
.7662
.6449
-1.2778 | 06750695
.9299 1.2239
-1.0837 -1.4826
.6496 .8912
.00210515
.0092 .0092
-1.1660 -1.1660
.7662 .7662
.6449 .6449
-1.2778 -1.2778 | | DUE SOUTH AND VERTICAL OF AZIMUTH AND TILT COEF. COMONTH: JAN FEB MATERIAL CO. 26 | TA1 = 343538
TA1 =0215
AR APR
32 45
41 1701 | 07
C2 =3646
MAY JUN
60 67
2034 2320 | A2 = 286992
C3 =
Jul
73
2227 | 2949
AUG
71 | QTA3 ± 24
C4 = 1.5991
SEP OCT
58 50
1578 1191 | 46740
C5 =-1.3261
NOV DEC
34 26
768 589 | | OMAHA, NEBRASKA TB30 T84 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 79.21 47.0 VT2/DD 67.79 40.2 VT3/DD 58.89 34.9 VT3/DD 363 61 ANNUAL DD 826 175 PARAMETER A 429 47 | (M= 1)
37.96
6 32.48
8 28.22
1 757
3 2397 | TB50
(M= 1)
31.55
27.00
23.46
911
3161
.502 | ELEVATION
TB55
(M= 1)
26.96
23.07
20.05
1066
4051
.513 | = 1325
TB60
(M= 1)
23.54
20.14
17.50
1221
5064
.521 | TB65
(M= 1)
20.89
17.87
15.53
1376
6197
.531 | LAT = 41.4
TB70 TB80
(M=12) (M=12)
18.41 14.87
15.78 12.74
13.71 11.07
1301 1611
7485 10562
.570 .627 | | AZIMUTH AND TILT COEF. A1 .0643 .056 A2 .1793 .258 A31248213 A4 .1530 .210 A5 .0533 .052 B1 .0109 .010 B2 -1.1209 -1.121 B3 .7381 .738 B4 .6413 .641 B5 -1.2523 -1.252 | 14 .3176
172742
18 .2524
19 .0574
19 .0109
0 -1.1209
11 .7381
3 .6413
31.2523 | .7381
.6413 | .7381
.6413 | .0382
.4867
4672
.3818
.0513
.0109
-1.1209
.7381
.6413
-1.2523 | .0349
.5531
5512
.4351
.0430
.0109
-1.1209
.7381
.6413 | 00200047
.8543 .9546
8812 -1.0570
.5050 .6798
.03500088
.0216 .0216
-1.1916 -1.1916
.8302
.5773 .5774
-1.2247 -1.2247 | | AZIMUTH AND TILT COEF. C
MONTH: JAN FEB M
TAVE: 20 25 | ION
TA1 = 308652
1 = .0218
IAR APR
39 54
85 1510 | QT
C2 =3111
MAY JUN
65 72
2002 2182 | A2 = 257857
C3 =
JUL
76
2063 | 2855
AUG
75 | QTA3 = 23
C4 = 1.5735
SEP OCT
63 55
1394 1010 | 21771
C5 =-1.2742
NOV DEC
40 28
683 526 | | SCOTTSBLUFF, NEBRASKA T830 T84 SOUTH-VERT. (M= 1) VT1/DD 105.47 VT2/DD 90.36 50.1 VT3/DD 78.53 MONTHLY DD 294 ANNUAL DD 861 PARAMETER A .692 AZIMUTH AND TILT COEF. |) (M= 1)
46.28
3 39.65
7 34.46
0 670
1 2806 | TB50
(M= 1)
37.89
32.46
28.21
818
3749
.534 | ELEVATION
T855
(M= 1)
31.94
27.36
23.78
970
4813
.522 | = 3957
TB60
(M=12)
27.37
23.49
20.42
1036
6000
.518 | TB65
(M=12)
23.81
20.44
17.77
1191
7328
.524 | TB70 TB80 (M=12) (M=12) 21.07 17.12 18.08 14.70 15.72 12.78 1346 1656 8792 12031 .529 .512 | | A1 .0125 .024 A2 .1738 .448 A32059503 A4 .1354 .322 A50031 .010 B10195019 B2 -1.1751 -1.175 B3 .7752 .775 B4 .5209 .520 B5 -1.2768 -1.276 | 18 .5752
146386
16 .4084
10 .0174
150195
11 -1.1751
12 .7752
16 .6208
1.2768 | .7752
.6208 | .0365
.7978
8897
.5665
.0192
0195
-1.1751
.7752
.6208
-1.2767 | .0585
1.2392
-1.2464
.8027
.0944
0244
-1.2556
.8632
.5404
-1.2634 | .0596
1.3198
-1.3600
.8706
.0777
0244
-1.2556
.8632
.5404
-1.2633 | .0608 .0662
1.4061 1.6814
-1.4853 -1.8607
.9456 1.1745
.0560 .0025
02440244
-1.2556 -1.2556
.8632 .8632
.5404 -5404
-1.2634 -1.2634 | | AZIMUTH AND TILT COEF. C
MONTH: JAN FEB M
TAVE: 23 29 | ION
TA1 = 339089
1 = .0048
IAR APR
34 44
75 1648 | C2 =3818
MAY JUN
56 66
1921 2236 | A2 = 283282
C3 =
JUL
72
2273 | 2798
AUG
72 | QTA3 = 24
C4 = 1.5940
SEP OCT
59 46
1645 1092 | 43534
C5 =~1.3381
NOV DEC
35 26
714 552 | | ELKO, NEVADA TB30 SOUTH-VERT. (M=12) VT1/DD 113.38 VT2/DD 97.29 VT3/DD 84.58 MONTHLY DD 271 ANNUAL DD 681 PARAMETER A .766 AZIMUTH AND TILT COEF | 59.25
50.85
44.20
519
1829
.794 | M=12) (M=
45.75 37
39.26 31
34.13 27
672 (
2693 3 | 350 TB55 | N = 5075
YB60
(M=12)
27.04
23.21
20.17
1137
6164
.738 | TB65 (M=12) 23.80 20.42 17.75 1292 7570 .715 | (M=12) (M=
21.25 17
18.24 15
15.85 13
1447 1
9073 12 | 10.8
(880
12)
7.50
5.02
3.06
1757
2321
623 | |--|---|---|--|---|--|---|--| | A1 .0048
A2 .1670
A31284
A4 .0900
A5 .0430
B10166
B2 -1.2535
B3 .8504
B4 .5711
B5 -1.2706 | .0181
.3734
-3533 -
.2214
.0506
0166 -
-1.2535 -1
.8503
.57111 | .4863 .59
.485967
.2957 .3
.0492 .04
.01660
.2535 -1.25
.8504 .85 | 717 .4546
443 .0343
1660166
535 -1.2535
504 .8503
711 .5711 | .5451
.0201
0166
-1.2535
.8503
.5711 | -1.1108 -1
.6463
.0018 -
0166
-1.2535 -1
.8504
.5710 | 1.1308 1.4
1.3092 -1.7
.7588 1.0
01910
01660
1.2535 -1.2
.8503 .8 | 180
1660
166
2535
3503 | | TAVE: 26 | AL QTA1 = 3
C1 = .0
FEB MAR
31 37 | 76783
0427 C2 = -
APR MAY
43 54
1895 2298 | OTA2 = 3142
2528 | 4448 C4
AUG SE | 8 46 | 970
C5 ±-1.3871
NOV DEC
35 23
800 616 | | | ELY, NEVADA TB30 SOUTH-VERT. (M= 1) VT1/OD 122.10 VT2/DD 104.52 VT3/DD 90.82 MONTHLY DD 285 ANNUAL DD 929 PARAMETER A .620 AZIMUTH AND TILT COE | 64.20
54.96
47.76
541
2202
.641 | M= 1) (M=
50.45 41
43.19 35
37.53 30
689
3081 4 | BSO TB55 | ON = 6253
TB60
(M= 1)
30.16
25.82
22.44
1152
6622
.597 | TB65
(M= 1)
26.59
22.76
19.78
1307
8079
.573 | (M= 1) (M= 23.77 19 20.35 16 17.68 14 1462 19642 13 | 39.3
1B80
= 1}
9.61
6.79
4.59
1772
3008 | | A1 .1402
A2 .2962
A33848
A4 .1473
A50173
B10494
B2 -1.1627
B3 .7557
B4 .7022
B5 -1.2929 | .1472
.4979
6266 -
.2787
0229 -
0494 -
-1.1627 -1
.7557
.7022
-1.2928 -1 | .6177 .7.
-77919
.3598 .4
03230
.04940
1.1627 -1.16
.7557 .7 | 483 .5469
4520618
4940494
627 -1.1627
557 .7557
022 .7022 | .1730
1.0332
-1.3258
.6590
0823
0494
-1.1627
.7557
.7022
-1.2928 | -1.5650791610690494 - 1.162775577022 | 1.4223 1.9
1.8848 -2.5
.9466 1.3
13436
1.1627 -1.1
.7557 | 2396
9443
5332
3273
1936
0494
1627
7557
7022
2928 | | TAVE: 22 | AL QTA1 = 3
5. C1 = .0
EB MAR
29 34 | 885856
0716 C2 ≠
APR MAY
41 50
1952 2262 | 9TA2 = 3218
2616 | 4361 C4
AUG SE | 8 45 | 464
C5 =-1.3759
NOV DEC
33 24
920 722 | | | LAS VEGAS, NEVADA T830 SDUTH-VERT. (M= 2) VT1/DD NA VT2/DD NA VT3/DD NA MONTHLY DO 2 ANNUAL DD 6 PARAMETER A NA AZIMUTH AND TILT COE | (M= 1) (
814.03 3
696.84 2
605.63 2
52
131 | 332 | B50 TB55
12) (M=12)
.77 108.35
.11 92.88 | DN = 2178
TB60
(M=12)
76.32
65.42
56.87
504
1831 | T865
(№ 12)
58.40
50.07
43.52
659
2658
.617 | (M=12) (M=
47.28 34
40.53 25
35.23 25
814 3625 5 | 36.1
(B80
=12)
4.23
9.35
9.35
1124
5957 | | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B4 NA B5 NA | .0064
-1472
-1577
-0813
.0143
.0127
-1.1942 -1
.7305
.7886
-1.3450 -1 | 36053
.2596 .2
.0350 .0
.0236 .0
1.2441 -1.2
.8022 .8 | 518 .4041
2464031
282 .2678
254 .0132
236 .0236
441 -1.2441
022 .8022
136 .7135 | 0310
.5101
5493
.3457
0050
.0236
-1.2441
.8022
.7135
-1.3197 | .6462
7293
.4434
0228
.0236
-1.2441
.8022
.7135 | .7991 19290 -1.355240411(.0236 1.2441 -1.2 .80227135 | 0335
1315
3692
7929
0851
0236
2441
8022
7135
3197 | | TAVE: 44 | AL QTA1 = 4
C1 = .0
 | 105194
D187 C2 =
APR MAY
62 74
2389 2653 | OTA2 = 3373
2297 | 5440 C | | 592
C5 =-1.4054
NOY DEC
53 43
1092 859 | | ``` LOVELOCK, NEVADA ELEVATION = 3904 LAT = 40.1 TB40 TB45 T850 TB55 TB60 TB65 TB70 TRAC SOUTH-VERT. (M= 1) I/DD 199.48 (M= 1) 92.24 (M= 1) 69.20 (M= 1) 54.25 (M= 1) (M= 1) (M= 1) (M=1) \{M=1\} VT1/DD 31.86 27.28 27.95 23.93 44.09 37.00 22.44 VT2/00 170.81 78.98 59.26 46.45 37.75 31.68 19.22 VT3/DD 148.44 68.64 51.50 40.37 18.56 27.53 23.71 20.80 16.70 MONTHLY DD 177 510 383 954 651 801 1108 1263 1573 ANNUAL DD 463 1322 1986 2818 4953 3811 6232 7627 10722 PARAMETER A .616 .677 .681 .668 .653 .638 .623 .603 .550 AZIMUTH AND TILT COEF. .0331 .0517 .0591 .0665 .0730 .0783 .0828 .0873 .0159 .2601 . 1598 .3833 .5157 -.6459 .3875 .6516 .7922 9451 1.3164 -.4809 .2943 ΑЗ -.0556 -.2077 -.3282 -.8176 -.9995 -1,2012 -1.6963 A4 .0349 . 1352 .2067 . 4836 .5850 .6975 .9750 A5 -.0294 -.0277 -.0345 -.0450 -.0560 -. 1069 -.0687 -.0854 -. 1634 B1 -.0195 -.0195 -.0195 -.0195 -.0195 -.0195 ~.0195 -.0195 -.0195 -1.1603 .7307 B2 -1.1603 -1,1603 -1.1603 -1.1603 -1.1603 -1.1603
-1.1603 -1.1603 83 .7307 .7307 .7307 .7306 .7307 .7307 .7307 .7307 84 .6753 .6753 .6753 .6753 6754 .6753 .6753 .6753 .6753 85 -1.2922 -1.2921 -1.2921 -1.2921 -1.2922 -1.2921 -1.2921 -1.2921 -1.2921 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTA1 405973 = 338297 QTAZ QTA3 = 290416 C2 = -.2060 C3 = -.5192 JUL AUG .0331 C4 = 1.7491 C5 = -1.4134 JAN FEB MONTH: MAR APR MÄY JUN ŠEP DCT NOV DEC 29 793 TAVE: 35 1179 42 48 50 67 50 30 63 39 QHOR: 1636 2190 2522 2802 2784 2496 2050 1448 705 RENO, NEVADA ELEVATION- = 4400 LAT = 39.5 TB30 TB40 TB45 TB50 TB55 TB60 TB65 TB70 TBBO (M=12) 295.82 253.79 (M=12) 56.83 48.76 42.38 SOUTH-VERT. (M= 12) 107.17 (M= 12) 75.52 (M=12) 45.16 38.74 33.68 (M=12) 37.26 (M=12) 27.57 (M=12) (M=12) VT1/DD 31.69 64.79 56.32 91.94 VT2/DO 31.97 27.79 27.19 23.64 23.65 18.77 VT3/DD 220.61 79.92 16.32 20.56 MONTHLY DD 578 2771 111 307 435 728 882 1037 1192 7893 1502 ANNUAL DD 296 1162 1874 3831 5052 6416 11110 PARAMETER A .840 .800 .769 .750 .731 .710 .682 649 .569 AZIMUTH AND TILT COEF. -.0201 -.0247 -.0283 -.0315 -.0412 ~.0488 1.7640 ~.0345 -.0377 .2052 -.1839 A2 .4174 .5525 .6837 .8156 .9559 1.1188 1.3083 A3 -.4276 -.5963 -.7643 -.9345 -1.1177 -2.1786 -1.3323 -1.5819 A4 .1191 .2556 .3493 . 4421 .5359 .6372 .7565 .8960 1.2309 A5 -0260 .0230 .0112 -.0029 -.0176 -.0353 -.0578 -.0846 -. 1453 B١ .0352 .0352 .0352 .0352 .0352 .0352 .0352 .0352 .0352 B2 -1,2504 -1.2504 .8360 -1.2504 -1.2504 -1.2504 -1.2504 -1.2504 -1.2504 -1.2504 B3 .8360 .8360 .8360 .8360 .8360 .8360 .8360 .8360 В4 6114 6114 .6114 .6114 -1.2847 6114 .6114 6114 .6113 R5 1.2847 -1.2847 -1.2847 -1.2847 -1.2847 -1.2847 -1.2847 -1.2847 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. QTA1 396079 QTA2 = 330088 QTA3 = 283405 C4 = 1.7538 SEP OCT 4065 .0266 C2 ₪ -.2316 C3 = -.4916 C5 =- MONTH: JUN 65 JAN FEB MAR APR MAY JÜL AUG NOV DEC 31 TAVE: 33 36 42 46 54 68 60 48 38 846 1130 QHOR: 2072 1682 2454 2726 2661 2429 2023 1424 904 679 TONOPAH, NEVADA ELEVATION = 5423 LAT = 38,1 TB30 TB40 TB45 TB50 TB55 TB60 TB65 TB70 TB80 SOUTH-VERT. (M= 1) (M=12) 68.73 (M=1) (M=1) (M=12) (M=12) (M= 12) (M=12) (M=12) VT 1/DD 318.84 122.82 90.06 54.52 45.18 38.57 33.65 26.81 VT2/00 273.21 46.79 105.24 77.18 58.98 28.88 38.77 33.10 23.01 237.49 140 67.09 494 51.28 595 VT3/00 91.48 40.68 750 33.71 28.78 25.11 20.00 MONTHLY DD 362 905 1060 1215 1525 ANNUAL DD 323 1166 1836 2664 3649 4783 6060 7472 10631 PARAMETER A .599 .642 .595 .570 .558 .539 .519 .496 .426 AZIMUTH AND TILT COEF. A1 .0584 .0625 .0713 -.0636 -.0627 -.0626 -.0626 -.0629 -.0669 .0648 .3606 .5445 1.1124 .9512 1.2921 1.4870 1.7146 2.3749 A3 -. 1214 -.4375 ~.6393 -1.0466 -1.2416 -2.0051 -2.8665 A4 A5 .0605 .2404 .3543 .5932 .7019 .8246 1.1242 960R 1,6005 -.0072 .0015 .0147 .0067 -.0049 -.0494 -.0222 -. 1296 -.0113 Bì -.0113 .0113 .0370 .0370 .0370 .0370 .0370 .0370 B2 -1,2091 -1.2091 -1.2091 -1.2718 -1.2718 -1.2718 -1.2718 -1.2718 -1.2718 .7440 .7440 B3 .7440 .8288 .8289 .8289 .8288 .8288 .8289 .7115 B4 6380 6380 .6380 .6380 .6380 .6380 B5 -1.3533 -1.3534 -1.3250 -1.3533 -1.3251 -1.3251 -1.3251 -1.3251 -1.3251 TOTAL ANNUAL TRANSMITTED RADIATION QTA2 = 352173 C2 = -.2475 DUE SOUTH AND VERTICAL OTA1 C1 ± = 422366 QTA3 = 302419 AZIMUTH AND TILT COEF. .0414 4996 C4 = 1.7671 C5 =-1.4292 MONTH: MAY 57 MAR APR FEB JUN AUG 72 JUL SEP OCT NOV DEC TAVE: 37 42 47 68 74 63 50 40 30 QHOR: 948 1274 1738 2277 2620 2746 2678 2428 2056 1545 1065 818 ``` | WINNEMUCCA, NEVADA TB30 SOUTH-VERT. (M= 1) VT1/DD 220.03 VT2/DD 188.49 VT3/DD 163.81 MONTHLY DD 139 ANNUAL DD 467 PARAMETER A .638 AZIMUTH AND TILT COEF. | T840 T845 (M= 1) (M= 1) 85.28 61.24 73.05 52.46 63.49 45.59 359 499 1466 2228 .701 .704 | TB50
(M= 1)
46.97
40.24
34.97
651
3154
.704 | 805 960
4236 5464
.699 .689 | TB65 (M= 1) 27.42 23.49 20.41 1115 6811 .672 | LAT = 40.9 TB70 (M= 1) (M= 1) 24.07 19.35 20.62 16.58 17.92 14.40 1270 1580 8258 11416 .650 .598 | |--|--|--|--|--|---| | A1 .040B
A2 .1549
A32295
A4 .1148
A50472
B1 .0002
B2 -1.1834 | .0390 .0414
.3634 .4672
46045770
.2472 .3134
0405 .0382
.0002 .0002
-1.1834 -1.1834
.7689 .7689
.6520 .6520
-1.2657 -1.2657 | .0428
.5510
6731
.3686
0387
.0002
-1.1834 -1 | .0445 .0464
.6403 .7437
78239148
.4306 .5054
04490571
.0002 .0002 | .0486
.8631
-1.0719
.5939
0744
.0002
-1.1834
.7689
.6520 | .0511 .0569
.9955 1.3062
-1.2484 -1.6643
.6934 .9287
09561465
.0002 .0002
-1.1834 -1.1834
.7689 .6520
-1.2657 -1.2657 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEI TAVE: 29 3! QHOR: 690 106 | OTA1 - 390423 | QTA2
C2 =2466
MAY JUN
56 66
2339 2677 | 2 = 317174
C3 =4591
JUL AUG
74 70
2631 2342 | QTA3 = 27
C4 = 1.7064
SEP OCT
60 48
1941 1319 | 2363
C5 =-1.3864
NOV DEC
39 28
814 656 | | YUCCA FLATS, NEVADA TB30 SOUTH-VERT. (M=12) VT1/DD 394.34 VT2/DD 338.15 VT3/DD 293.94 MONTHLY DD 95 ANNUAL DD 252 PARAMETER A .770 A71MUTH AND ILLI COFF. | TB40 TB45
(M=12) (M=12)
134.40 93.26
115.25 79.97
100.18 69.51
279 402
906 1452
.754 .744 | TB50
{M=12}
69.49
59.59
51.80
539
2152
.734 | ELEVATION = 3927
TB55 TB60
(M=12) (M=12)
54.39 44.44
46.64 38.11
40.55 33.13
688 643
3018 4043
.714 .689 | TB65
(M=12)
37.54
32.19
27.98
998
5202
.661 | LAT = 36.9
TB70 TB80
(M=12) (M=12)
32.49 25.60
27.96 21.95
24.22 19.08
1153 1463
6486 9384
.629 .554 | | A1 .0115
A2 .4298
A34597
A4 .2644
A5 .0197
B1 .0104 | .0188 .0135
.4691 .5471
49855984
.2892 .3428
.0215 .0138
.0104 .0104 | .0155
.6453
7255
.4103
.0038 | .0178 .0202
.7605 .8926
8746 -1.0468
.4897 .5817
00790224
.0104 .0104 | .0227
1.0408
-1.2410
.6859
0394
.0104
-1.2526
.8197
.6872 | .0251 .0302
1.2107 1.6516
-1.4652 -2.0531
.8067 1.1246
06051200
.0104 .0104
-1.2525 -1.2525
.8197 .6872 .6872
-1.3154 -1.3154 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COFF. MONTH: JAN FE TAVE: 36 3I QHOR: 945 129 | DARIATION | | 2 = 333927
C3 =5494
JUL AUG | QTA3 = 28
C4 = 1.8360
SEP OCT
68 55
2085 1563 | 6642
C5 ±-1.4002
NOV DEC
45 32
1028 815 | | CONCORD, NEW HAMPSHIRE TB30 SOUTH-VERT. (M=12) VT1/DD 45.43 VT2/DD 38.84 VT3/DD 33.73 MONTHLY DD 276 ANNUAL DD 962 PARAMETER A .585 AZIMUTH AND TILT COEF. | TB40 TB45 (M=12) (M=12) 23.55 18.45 20.13 15.78 17.49 13.70 532 680 2149 2960 .743 .806 | T850
(M±12) (| TB55 TB60
(M=12) (M=12)
12.76 11.03
10.91 9.43
9.48 8.19
983 1137
4991 6213
.893 .929 | TB65
(M=12)
9.71
8.30
7.21
1292
7582
.960 | TB70 TB80 (M=12) (M=12) 8.67 7.14 6.10 6.44 5.30 1447 1757 9092 12439 .986 1.009 | | A10436
A2 .2490
A33041
A4 .2295
A50630
B10001
B2 -1.0874
B3 .7676
84 .6042
B5 -1.1053 | 02420188
.2742 .2819
32513319
.2347 .2385
.04560421
00010001
-1.0874 -1.0874
.7676 .7676
.6042 .6042
-1.1053 -1.1053 | .2941
3468
.2481
0422
0001
-1.0874 -1
.7676
.6042 | 01210098
.3110 .3278
36893921
.2622 .2764
04430474
00010001
1.0874 -1.0874
.7676 .7676
.6042 .6042
1.1054 -1.1053 | 0080
.3476
4199
.2933
0516
0001
-1.0874
.7674
.6042
-1.1053 | 00650041
.3724 .4442
45555575
.3144 .3750
05730737
00010001
-1.0874 -1.0874
.7676 .7676
.6042 .6042
-1.1053 -1.1053 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEF TAVE: 20 24 QHOR: 453 735 | 07A1 = 233141
C1 = .0206
B MAR APR
1 31 45 | QTA2
C2 =3168
MAY JUN
57 65
1648 1749 | 2 = 194711
C3 =2224 ~
JUL AUG
70 67
1649 1423 | OTA3 = 16
C4 = 1.5143
SEP OCT
58 49
1074 816 | 7543
C5 =-1.1470
NOV DEC
38 23
465 336 | ``` LAKEHURST, NEW JERSEY ELEVATION = 121 LAT = 40.0 TB40 TB45 TB50 TB55 TB60 TB65 TB70 TB80 (M= 1) 34.19 29.21 25.37 SOUTH-VERT. (M= 1) (M= 1) 62.03 (M=1) (M=12) (M=12) (M=12) (M=12) (M=12) VT 1/DD 151.55 44.41 27.55 21.89 18.10 15.42 11.89 VT2/DD 37.94 18.70 16.24 129.48 53.00 23.54 15.47 13.17 10.16 VT3/00 112,45 46.03 32.95 20.44 13,43 11.44 8.82 MONTHLY DD 144 353 493 585 736 640 890 1045 1355 ANNUAL DD 303 986 1584 3232 2334 4285 5497 6857 10033 PARAMETER A .510 .585 .582 .570 .575 .64B .702 .746 .796 AZIMUTH AND TILT COEF. A1 .0432 .0540 .0622 -.0737 -.0615 .0684 -.0538 -.0487 -.0435 .6152 -.7143 A2 .3238 .4543 .6005 .3713 .5459 .6056 -.7245 .6186 .6920 -.5542 .3095 -,3544 A3 ~.2895 -.4459 -.7082 -.7502 -.8641 A4 . 1424 . 1840 .2419 .4892 .4806 .4880 .5013 .5648 A5 .0930 .0862 .0898 .0872 -.0627 -.0655 -.0704 -.0762 -.0952 B1 .0188 -.0188 -.0188 .0351 .0351 -.0188 .0351 .0351 .0351 B2 -1.0806 -1.0806 -1.0806 -1.0806 -1.0743 -1.0743 -1.0743 -1.0743 -1.0743 .7081 .7382 .7382 B3 .7081 .7081 .7081 .7382 .7382 .7382 .7254 .7254 R4 .7254 .7254 .6712 .6711 .6711 6711 -1.1975 R5 -1.1975 -1.1975 -1.1975 -1.1328 -1.1327 -1.1327 -1.1327 -1.1327 TOTAL ANNUAL TRANSMITTED RADIATION C2 = -.3217 DUE
SOUTH AND VERTICAL AZIMUTH AND TILT COEF. QTA1 C1 = 259427 = 216569 QTA3 = 186313 .0138 C3 = -.2356 C4 = SEP 1.5494 C5 = -1.1410 APR MONTH: JAN MAR MAY 59 FEB JUN 70 JUL 74 AUG 72 OCT S6 NOV DEC 29 32 TAVF: 40 49 65 46 36 594 810 QHOR: 1141 1458 1777 1776 1752 1593 1261 963 661 447 NEWARK, NEW JERSEY ELEVATION = 30 LAT = 40.7 TB30 TB40 TB45 TB50 TB65 TB70 TB55 TB60 TB80 SOUTH-VERT. (M= 1) /DD 208.63 (M= 1) 69.18 (M= 1) 47.38 (M= 1) 35.34 (M= 1) 28.02 (M= 1) 23.18 (M= 1) 19.74 (M= 1) 17.19 \{M=12\} VT 1/00 13.45 11.50 30.21 26.24 59.14 23.96 19.82 17.21 16.87 14.66 14.69 12.76 VT2/00 178.35 40.50 154.90 99 20.81 735 2982 VT3/00 51.37 35.17 9.99 583 2125 MONTHLY DD ANNUAL DD 434 298 888 1378 1043 1198 185 1400 3972 823 5105 9575 PARAMETER A .530 .524 .531 .533 .536 .549 .566 .591 .646 AZIMUTH AND TILT COEF. A1 -.0079 -.0118 -.0182 ~.0261 -.0273 -.0234 -.0283 -.0290 -.0388 .5210 -.5636 .5951 -.6499 .4292 -.4647 A2 .2488 .3268 .6591 .7178 .7635 .9535 -.3507 A3 -,2489 -.7331 -.8141 -.8816 -1.1022 A4 .2991 . 136B .1812 .2435 .3488 .3981 .4476 4902 .6803 A5 .0379 .0439 .0552 .0667 .0691 .0621 .0505 0365 -.0234 Bì .0206 0206 .0206 .0206 0206 .0206 .0206 .0206 .0240 B2 -1.1013 -1.1013 -1.1013 -1.1012 -1.1013 -1.1013 -1.1012 -1.1013 -1.1312 ₿3 .7459 .7459 .7458 .7459 .7459 .7459 .6977 .7459 .7459 .7818 B4 .6977 .6976 .6977 .6977 .6976 .6976 .6976 .6413 B5 -1,1892 -1.1892 -1.1892 -1.1893 -1.1892 -1.1892 -1.1892 -1.1664 -1.1892 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA1 257955 QTA3 = 185041 AZIMUTH AND TILT COEF. 0029 C2 ⊨ C3 = -.2657 C4 = 1.5823 C5 =~1.1690 MONTH: OCT 57 NOV JAN MAR APR MAY JUN JUL AUG SEP DEC 35 TAVE: 40 62 72 75 73 67 46 OHOR: 549 794 1143 1461 1799 1825 1769 1559 1299 949 577 476 ALBUQUERQUE, NEW MEXICO ELEVATION = 5312 LAT = 35.1 TB40 TB30 TB45 TB50 TB55 TB60 TB65 TB70 TB80 SOUTH-VERT. (M=12) /DD 727.92 (M= 1) 116.19 99.29 (M= 1) 81.13 (M= 1) 61.62 (M= 1) 187.50 (M= 1) 41.42 (M= 1) 27.75 (M= 1) (M= 1) 35.58 VT1/00 49.55 VT2/00 623.13 69.33 60.23 482 160.23 23.71 20.60 52.66 42.34 35.39 30.40 541.54 139.20 86.26 337 VT3/DD 45.75 635 2734 36.79 789 30.75 26.41 MONTHLY DD 1099 1409 ANNUAL DD PARAMETER A 179 753 1257 1925 3677 4784 6074 9108 . 420 .416 .468 .501 .508 .503 .501 .503 .469 AZIMUTH AND TILT COEF. AT -.0543 .0095 .0075 .0059 .0050 .0044 .0044 .0052 .0102 .5942 -.7137 .8541 .5490 .7647 .5665 .6496 .8901 -1.1269 1.4787 1.0279 A3 -.8331 -.6598 -.8005 -.6871 -.9548 -1.3218 -1.9594 A4 .6177 .3554 .3782 .4494 .5440 .6478 .7629 -.1138 1.1316 Α5 . 1115 ~.0165 -.0168 -.0249 -.0606 -.0841 -.0413 -.2090 B١ .0342 .0189 .0189 .0189 .0189 .0189 .0189 .0189 .0189 B2 -1.1590 -1.1094 -1.1095 -1.1094 -1.1094 -1,1095 -1.1094 -1.1094 -1.1094 .7315 .6633 В3 .6633 .6633 .6633 .6633 .6633 .6633 .6633 84 .7190 .8164 .8164 .8164 .8164 .8164 .8164 .8164 B164 85 .3414 1.3401 -1.3401 -1.3401 -1.3401 -1.3401 -1,3401 -1.3401 -1.3402 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. C1 = 394526 QTA3 = 281992 C4 = 1.8563 C1 C3 = -.5058 .0531 C5 ±-1.3877 MONTH: JAN FEB APR 54 MAR MAY JUN JUL SEP OCT NOV AUG DEC 35 TAVE: 34 44 30 65 73 77 57 43 15 67 979 QHOR: 1345 1744 2289 2583 2653 2485 2308 1955 1596 1170 950 ``` ``` CLAYTON, NEW MEXICO ELEVATION = 4970 LAT = 36.4 TB30 TB40 TB45 TB50 TB55 TB60 TB65 TB70 TRRO SOUTH-VERT, (M= 12) (M=12) (M=12) (M=12) 102.34 (M=12) (M=12) (M= 12) 41.99 (M=12) 36.29 330.72 VT 1/DD 143.06 77.07 60.82 49.80 28,53 52.12 283.39 122.60 87.70 66.04 57.40 31.09 42.67 35.98 24.45 OG/ETV 246.34 106.57 76.23 45.30 37.09 31.28 27.03 21.25 MONTHLY DD 125 831 289 404 537 680 985 1140 1450 ANNUAL DD 362 1023 5191 1561 2241 4036 3062 6533 9701 PARAMETER A .502 .448 .445 .437 . 430 . 423 419 .412 .351 AZIMUTH AND TILT COEF. .0099 Α1 .0164 .0198 .0245 .0293 .0336 .0376 .0412 .0565 1.1186 .8240 .9644 1.0279 1.2347 1.3808 1.5654 1.7784 2.5891 A3 -1. 159 i -.8385 ~.9693 -1.0465 -1.5051 .8941 -1.7574 1.0406 -2.0469 -3.1125 A4 . 49 19 .5733 . 6205 .6891 .7783 1.2088 1.8326 A5 .0886 .1101 . 1061 .09B8 .0866 .0644 .0359 -.0893 .0049 -.0035 -.0035 -1.1936 -.0035 -.0035 -.0035 -.0035 -.0035 -.0035 -.0035 -1.1936 .7618 ₿2 -1.1936 -1.1936 -1. 1936 -1.1936 -1.1936 -1.1936 -1.1936 .7618 В3 .7618 .7618 .7618 .7618 .7618 .7618 .7618 B4 .6747 .6747 .6747 .6747 .6747 .6747 .6747 .6747 -6747 R5 -1.3429 -1.3429 ~1.3429 -1.3429 -1.3429 -1.3429 -1.3429 -1.3429 -1.3429 TOTAL ANNUAL TRANSMITTED RADIATION OTAI CI = DUE SOUTH AND VERTICAL 387230 QTA3 = 277587 AZIMUTH AND TILT COEF. .0338 C3 = -.4199 C4 = 1.7183 C5 =-1.3864 APR 53 MONTH: JAN FEB MAR MAY JUN JUL AUG SEP OCI NOV DEC TAVE: 33 972 36 42 61 70 74 73 65 55 42 33 OHOR: 1243 1725 2076 2264 2296 2323 2107 1779 1485 1037 861 LOS ALAMOS, NEW MEXICO ELEVATION .= 7380 LAT = 35.8 TB40 TB30 T845 1850 TBS$ T860 TB65 TB70 TB80 SOUTH-VERT. (M=12) 1/DD 217.86 (M=12) 69.00 (M=12) 44.93 (M= 1) 38.27 (M= 1) 32.67 (M= 1) 28.49 (M=12) (M≈12) (M=11) VT 1/00 93.09 54.45 186.62 162.19 79.74 69.31 VT2/00 59.11 51.37 46.64 38.48 32.71 27.92 24.35 18.99 VT3/DD 40.54 33.45 28.42 24.26 21.16 16.49 903 183 428 MONTHLY DO 577 886 3789 1246 1058 1213 ANNUAL DD 1241 1937 2790 4953 363 7809 6297 11184 PARAMETER A .595 .526 ,481 .438 .407 .393 .385 .349 .386 AZIMUTH AND TILT COEF. -.0415 -.0337 -.0231 ~.0133 -.0049 .2371 . 2347 .2424 -.3778 1.8983 A2 .3259 .5814 .7956 -.1774 1.0708 1.3697 1.2926 1.7509 1,4863 A3 A4 -.2670 -.5250 -1.1163 -1.4931 -1.9614 -2.3143 -2.6190 .3447 . 1853 . 4905 -6842 .8977 .8886 1.0325 1.2313 1,5627 A5 .1021 .0768 .0986 .0832 .0613 -.1187 -. 1377 -. 1713 -.3484 .0383 .0383 Βì กรหร .0383 .0383 -.0199 -.0199 -.0199 . 1488 R2 ~1.1982 -1.1982 -1.1982 -1.1982 -1.1982 -1.1242 -1.1242 -1.1242 -1.0068 .7586 83 .7586 .7586 .7138 . 7586 .7587 .6897 .6897 .6897 .5457 В4 .713B .7138 .7138 .8073 -1.3081 .7138 8073 8074 8743 -1.3178 BS. -1.3178 -1.3177 -1.3177 -1.3081 -1.30B1 -1.3118 TOTAL ANNUAL TRANSMITTED RADIATION QTA1 C1 = DUE SOUTH AND VERTICAL 342227 QTA3 = 244705 C4 = 1.7964 SEP OCT 60 53 AZIMUTH AND TILT COEF. . 1024 £2 = C3 = -.4776 C5 = -1.3387 SEP MONTH: JAN FEB MAR APR MAY JUN JUL AUG NOV DEC TAVE: 30 32 41 49 54 67 71 65 38 26 OHOR: 889 1191 1558 2141 2150 1974 2272 2080 1777 1410 796 ROR ROSWELL, NEW MEXICO ELEVATION = 3619 LAT = 33.4 1830 T840 TB45 TB50 TB55 TB60 TB65 TB70 TB80 SOUTH-VERT. (M=12) (M= 12) 138.53 (M=12) 47.75 (M=12) 30.61 (M=12) (M±12) (M=12) (M≈ 12) (M=12) VT1/00 VT2/00 97.57 853.90 217.54 73.62 58.25 40.29 730.88 26.20 22.77 186.20 118.57 83.52 63.02 49,85 40.87 34.48 635.21 46 VT3/00 161.83 103.05 72.58 54.77 43.33 35.52 827 29.97 MONTHLY DD 182 285 949 405 536 678 980 1290 ANNUAL DD PARAMETER A 110 553 2171 2990 1488 3960 5101 7865 .660 .584 .582 .584 .573 .552 .533 .518 .464 AZIMUTH AND TILT COEF. .0223 .0347 .0365 .0425 .0385 .0477 .0523 A ? .0560 .0663 .7804 A2 .3584 .5374 .5845 .6631 .9270 1,0816 1.2475 1.7588 -.3716 -.5743 -.8905 -.6321 -.7367 A3 -1.0807 -1.5113 -1.2853 -2.2201 .5466 .2402 .3658 .4005 AS . 4598 .6535 .7674 .8923 1.2859 .0160 .0139 -.0297 -.0479 AS. .0101 -.0009 -.0148 .0722 -. 1589 -.0306 -.0306 -.0306 81 -.0306 -.0306 -.0306 -.0306 -.0306 -.0306 -1.1869 -1.1869 -1.1869 B2 -1.1869 -1.1869 -1.1869 -1.1869 -1.1869 -1.1869 .7315 . 73 15 .7315 .7315 B3 . 7315 .7315 .7315 . 73 15 . 73 15 .7936 .7936 RΔ . 7936 7936 . 7936 . 7935 . 7936 . 7935 .7935 -1.3433 -1.3434 -1.3433 -1.3433 85 -1.3433 -1.3433 -1.3433 -1.3433 -1.3433 TOTAL ANNUAL TRANSMITTED RADIATION QTA2 = 309904 C2 = -.2095 372331 QTA1 QTA3 = 266109 DUE SOUTH AND VERTICAL C3 = -.5640 JUL AUG 78 79 AZIMUTH AND TILT COEF. C4 = 1.9251 SEP OCT 69 59 .0005 C5 =-1.3598 APR MONTH: FEB MAR MAY JUN JAN MOV DEC 39 43 51 59 69 11 TAVE: 49 38 1382 1834 2219 2586 1479 1058 2449 2490 2195 1921 1160 OHOR: 947 ``` ``` TRUTH OR CONSEQUENCES, NEW MEXICO ELEVATION = 4859 LAT ≈ 33.2 TB30 TB40 TB45 TB50 TB65 SOUTH-VERT. (M= 1) /00 491.46 TB55 TB60 TB70 TB80 (Me 1) (M= 1) 133.58 (M= 1) 95.63 (M= 1) 72.38 (M= 1) 57.41 (M= 1) 47.30 (M=)) (M=1) VT1/DD 200.02 40.16 30.84 VT2/00 419.74 170.83 114.09 81.68 61.81 49.03 40.39 34.30 26.34 VT3/0D 364.69 148.43 29.80 99.12 70.96 53,71 42.60 35.10 GO YJHTROM 84 206 309 431 570 718 1336 ANNUAL DD 124 511 883 1394 2062 2888 3878 5050 7916 PARAMETER A 658 .727 .700 .674 .650 .618 .584 .562 .500 AZIMUTH AND TILT COEF. .0005 .0138 .0189 .0232 .0269 .0309 .0349 .0381 .0497 .2182 -.3000 A2 -.0283 .0878 . 1513 .3115 .4431 .6087 .7855 1.2873 A3 .0128 -.1421 -.2180 -. 4203 ~.5950 -.8174 -1.0586 -1.7668 A4 -.0041 . 1009 . 1500 .2013 .2730 .3750 .5028 ,6387 1.0401 A5 -.0151 -.0354 -.0389 -.0442 -.0559 -.0753 -.1004 -. 1285 -.2289 В١ .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 -1.1042 B2 -1.1041 -1.1042 -1.1042 -1.1042 -1.1041 ~1.1041 -1.1042 -1.1042 .6229 B3 .6229 .6230 .6229 .6229 .6229 .6229 .6229 .6229 B4 .8873 .8873 .8873 .8873 .8873 .8873 8873 8873 8873 R5 -1.3745 -1.3745 -1.3745 -1.3745 -1.3745 -1.3745 -1.3745 ~1.3745 -1.3745 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL 386862 QTA1 QTA3 = 276433 AZIMUTH AND TILT COEF. Č1 = .0565 C3 - -.5685 C4 = C5 = -1.3932 1.9430 FEB SEP 72 MONTH: JAN MAR APR MAY JUN JUL AUG OCT 58 NOV DEC TAVE: 36 1066 43 1429 50 60 67 78 75 4R 39 OHOR: 1850 2347 2570 2684 2382 2227 1965 1522 1029 1256 TUCUMCARI, NEW MEXICO ELEVATION = 4039 LAT = 35.2 TB30 TB40 TB45 TB50 T855 TB60 TB65 TB70 7880 SOUTH-VERT. (M= 2) 707.95 (M= 2) 220,65 (M= 1) 141.31 (M= 1) 99.78 (M= 1) 75.18 (M=1) (M=1) (M≥ 1) (M=2) VT1/DD 59.50 48.90 41.45 31.99 VT2/DD 600.17 187.07 120.76 85.26 74.08 64.24 50.84 41.79 35.42 27.12 VT3/DD 520.35 162.19 104.92 55.82 44.17 36.31 30.77 23.51 421 1735 MONTHLY DD 50 161 298 559 707 860 1015 1111 177 ANNUAL DO 1146 2466 693 3339 4366 5573 8502 PARAMETER A .216 .293 .346 .383 .372 .384 .386 .386 .347 AZIMUTH AND TILT COEF. A١ -.0964 -.0754 .0042 -.0002 -.0076 -.0034 -.0058 .0091 -.0799 A2 -1.5724 -.8493 .6704 .7248 -.8549 .8210 .9526 1.2913 1.1111 .7580 A3 1.3452 .6698 -.7790 -.9845 -1.1603 -1.3021 A4 -.5291 -.9882 1.0251 .5337 .5753 .6511 .7549 .8810 .6889
AS .0042 -.4003 -.2658 -.0088 -.0252 -.0450 -. 1007 -.0709 -.3466 81 .0317 .0317 -.8596 .2951 .0121 0121 .0121 .0121 .0121 .0317 -.8596 -1.0963 -1.0963 -1.0963 -1.0963 -1.0963 -1.0963 -.8596 .2951 .6389 .6389 .6389 .6389 .6389 .6389 . 2951 1.1321 1.1322 .8093 .8093 -1.3679 8093 .8093 8092 8093 1.1322 85 -1.4105 -1.4106 -1,3679 -1.3679 -1.3679 -1.3679 -1.3679 -1.4106 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI QTA1 382497 QTA3 = 273696 AZIMUTH AND TILT COEF. .0099 €2 € C3 = -.4751 C4 = 1.8214 C5 =-1. .3923 MONTH: JAN FE8 MAR APR MAY JUN JUL AUG SEP OCT 59 NOV DEÇ TAVE: 37 40 46 56 65 78 77 69 46 37 1011 QHOR: 1267 1742 2187 2265 2460 2383 2186 1893 1449 1072 930 ALBANY, NEW YORK ELEVATION = 292 LAT = 42.8 TB30 TB40 TB45 TB50 TB55 TB60 TB65 TB70 TB80 SOUTH-VERT. (ME 1) (M= 1) 36.44 31.19 (M= 1) 28.73 (M=12) (M=12) (M=12) 12,19 (M=12) (M=12) (M=12) VT1/00 23.48 20.09 68.58 19.07 16.05 13.86 9.83 VT2/00 58.71 24.60 16.32 13.73 11.86 10.43 8.41 VT3/DD 51.01 307 27.10 578 979 21.37 17.45 14.17 9.06 10.30 7 71 MONTHLY DO 733 670 824 1134 1289 1599 2645 .544 NNUAL DD 773 1868 3528 5633 4519 6886 8305 11586 .549 PARAMETER A .557 .555 .620 .674 .724 .770 . 829 AZIMUTH AND TILT COEF. .0058 -.0019 A١ .0147 .0193 .0009 .0028 .0040 .0048 .0056 A2 4414 .5550 .5785 -.6525 .6486 .5903 .5769 .5787 5879 .6517 A3 3952 -.5196 -.6227 -.6560 -.6737 -.6972 -.8025 A4 A5 .2144 .2654 .3167 .4550 .4393 4348 .4356 4445 .5016 . 1320 1089 . 1432 -.0431 -.0402 -.0408 -.0444 -.0514 -.0745 .0061 Rì , 006 î .0061 .0143 .0143 .0143 .0143 .0143 .0143 B2 -1.1572 -1.1572 -1.1203 -1.1203 -1.1203 -1.1203 -1.1203 -1.1203 .7906 .5976 83 .7982 .7906 .7906 .5976 .7983 .7982 .7906 .7905 .7906 6327 5976 84 .6327 6327 5976 . 5976 85 -1.2069 -1.2069 -1.2070 -1.1403 -1.1403 -1.1403 -1.1403 -1.1403 -1.1403 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTAI 264255 QTA3 = 189523 C4 = 1.5752 C1 .0310 C2 = C3 = -.2990 C5 =-1.2016 NOV DEC 39 28 MONTH: JAN FEB 23 MAR 33 APR 47 MAY 56 JUL 72 OCT 55 JUN SEP AUG TAVE: ŽΪ 68 69 63 QHOR: 508 107€ 789 1484 1870 1938 1928 1687 1223 902 519 400 ``` | BINGHAMTON, NEW YORK TB30 TB40 SOUTH-VERT. (M= 1) (M=12) VT1/DB 36.23 18.47 VT2/DD 30.86 15.72 VT3/DD 26.79 13.63 | (M=12) (M=
14.17 11
12.06 9
10.46 8 | B50 TB55
12) (M=12)
.43 9.54
.73 8.12
.44 7.04 | T860
(M=12)
8.14
6.93
6.01 | (%=12) (%
7.07 (
6.02)
5.22 | TB70 TB80
=12) (M=12)
6.25 5.08
5.32 4.32
4.62 3.75 | |--|---|--|--|--|--| | MONTHLY DD 335 453 ANNUAL OD 923 2172 PARAMETER A .545 .679 AZIMUTH AND TILT COEF. | 3011 3 | 731 876
950 5008
808 ,861 | 1027
6199
.917 | 7549 | 1337 1647
9071 12503
.028 1,104 | | A105061120
A2 .2675 .1921
A325872770
A4 .1629 .2473
A5 .04021279
B1 .0555 .0859
B292158787
B3 .6072 .6048 | .1980 .2
27642
.2428 .2
11401
.0859 .0
87878 | 424 .2413
0641007
859 .0859 | .2098
2844
.2386
0957
.0859 | .2123
2881
.2369
0922
.0859 | 07360666
2178 .2459
29683400
2386 .2602
09070960
0859 .0859
87878787
5048 .6048 | | 84 .7162 .6892
B5 -1.06909882
TOTAL ANNUAL TRANSMITTED RADIATION | .6891 .6
98829 | 89) .6891
8829882 | .6891
9882 | .6891 .6
9882 9 | 5891 .6891
98829882 | | DUE SOUTH AND VERTICAL QTAI
AZIMUTH AND TILT COEF. C1 =
MONTH: JAN FEB MAR
TAVE: 20 22 28
QHOR: 382 594 870 | = 203903
.0254 | QTA2 = 16974
1900 | | 0CT #
50 | 25 =-1.0651
NOV DEC
37 26
413 280 | | BUFFALO, NEW YORK TB30 SOUTH-VERT. (M= 1) VT1/DD 44.73 22.08 VT2/DD 38.07 18.80 VT3/DD 33.03 16.31 MONTHLY DD 229 463 ANNUAL DD 661 1684 PARAMETER A .540 .586 | (M=12) (M=
16.44 12
14.00 10
12.14 9 | B50 TB55
12) (M=12)
.59 10.16
.72 8.65
.30 7.50
631 783
321 4346
732 .807 | TB60 | (M=12) (M=7.29 (6.20 5.38 (1091 6830 (6.20 (6.20 6.20 6.20 6.20 (6.20 6.20 6.20 (6.20 6.20 6.20 (6.20 6.20 6.20 (6.20 6.20 6.20 (6.20 6.20 6.20 6.20 (6.20 6.20 6.20 6.20 6.20 (6.20 6.20 6.20 6.20 6.20 6.20 (6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 | EAT = 42.9
TB80 TB80
=12) (M=12)
6.38 5.11
5.43 4.35
4.71 3.77
1246 1556
8306 11679
1989 1.074 | | AZIMUTH AND TILT COEF. A102960573 A2 .3405 .3639 A335213920 A4 .1755 .2162 A5 .0601 .0398 B1 .0706 .0706 B288838883 B3 .6106 .6106 B4 .7130 .7130 B5 -1.0120 -1.0120 | .3476 .3
40173
.2710 .2
02720
.0259 .0
88818
.6253 .6 | 881 ~.8891
253 .6253
852 .6852 | .2306
0378
.0259
8881
.6253
.6851 | .2708333632306043300259888116253 .6851 .6 | 0149 .0109
2692 .2806
33803655
2339 .2523
04920634
0259 .0259
38818881
5253 .6253
5851 .6851
38229822 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA1 AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 25 25 33 QHOR: 341 527 891 | = 203843
.0116 | QTA2 = 16937
1584 | | OCT I | 5
C5 ==1.0812
HOV DEC
40 29
350 267 | | MASSENA, NEW YORK TB30 SOUTH-VERT. (M= 1) VT1/DD 32.49 VT2/DD 27.79 17.35 VT3/DD 24.14 15.07 MONTHLY DD 448 781 ANNUAL DD 1395 2746 PARAMETER A 708 707 AZIMUTH AND TILT COEF. | (M= 1) (M=
16.95 14
14.50 12
12.59 10
935 1
3631 4 | ELEVATION 155 1) (M= 1) .55 12.75 .44 10.90 .81 9.47 089 1244 640 5772 741 .763 | TB60 | (M=12) (M=
10.11 9
8.65 7
7.51 6
1336 1
8436 9 | LAT = 44.9
1870 T880
12) (M=12)
1.05 7.50
6.42
6.73 5.57
1491 1801
1985 13397
1865 .916 | | A1 .0875 .0898 A2 .1781 .2674 A317402597 A4 .1704 .1678 A5 .0122 .0221 B101580158 B2 -1.0848 -1.0848 B3 .7346 .7346 B4 .6052 .6052 B5 -1.1485 -1.1485 TOTAL ANNUAL TRANSMITTED RADIATION | .2978 .3
29203
.1889 .2
.0238 .0
.01580
-1.0848 -1.0
.7346 .7 | 091 .2305
217 .0170
1580158
848 -1.0848
346 .7346
052 .6052 | .3750
3957
.2537
.0103
0158
-1.0848 -
.7346
.6052 | .4976
5364
.3526
.0045
.0805
1.1248 -1.1 | .8001 .8001
.5399 .5399 | | | = 259809
.0132 | OTAZ = 21672
2560 | | 0CT 8 | 25 ==1.2176
IOV DEC
34 21
134 327 | | NEW YORK (LA | TB30 |), NEW YORK
TB40 | TB45 | TB50 | ELEVATION
TBS5 | I = 52
TB60 | T865 | T870 | TB80 ≒ TB | |--|----------------------|--------------------------|-------------------|---------------------|---------------------------|------------------|-------------------------|-------------------------|------------------| | SOUTH-VERT.
VT1/DD | . (M= 1)
193.36 | (M= 1)
66. 6 5 | (M≃ 1)
45.23 | (M= 1)
33.57 | (M= 1)
26.61 | (M≃ 1)
21.98 | (M= 1)
18.69 | (M=12)
16.07 | (M=12)
12.35 | | VT2/00 | 165.21 | 56.95 | 38.65 | 28.58 | 22.73 | 18.78 | 15.97 | 13.75 | 10.57 | | VT3/DD
MONTHLY DD | 143.47
100 | 49.45 | 33.56 | 24.91 | 19.74 | 16.31 | 13.87 | 11.94 | 9.18 | | ANNUAL DD | 204 | 290
782 | 427
1328 | 576
2029 | 726
286 1 | 879
3849 | 1034
4998 | 103 }
63 16 | 1341
9495 | | PARAMETER A | .640 | .557 | .538 | .542 | .538 | .546 | .557 | .585 | .661 | | AZIMUTH AND | .0469 | .0684 | .0738 | .0752 | .0779 | .0779 | .0774 | .0199 | .0208 | | A2 | .2046 | .3590 | .4429 | .5103 | .5944 | .6622 | .7355 | .9914 | 1.0036 | | A3
A4 | 2061
.1331 | 3698
.2360 | ~.4591
.2915 | 5354
.3378 | 6324
.3968 | 7163
.4477 | 8134
.5070 | -1.0992
.6614 | -1.1546
-6963 | | A5 | .0265 | .0410 | .0495 | .0528 | .0551 | .0517 | .0421 | .0424 | .0086 | | 81
82 | 0331
-1.0800 0121
-1.1401 | 0121
-1.1401 | | B3 | .7280 | .1279 | .7279 | .7279 | .7279 | .7279 | .7279 | . 806 1 | .8061 | | 84
85 | .7081
-1.1736 .6462
-1.1582 | .6462
-1.1582 | | TOTAL ANNUAL 1 | TRANSMITI | ED RADIATION | | | | | | | -1.1506 | | DUE SOUTH AND AZIMUTH AND | | CAL QTA1 | = 241010
.0224 | 0°
C2 =3712 | TA2 = 20125
- = C3 = - | | QTA3 = 1
C4 = 1.5321 | 173178
 C5 =-1 | 1270 | | MONTH: | | FEB MAR | APR | MAY JUN | JUL . | AUG | SEP OCT | NOV | DEC | | TAVE:
QHOR: | 31
531 | 33 40
793 1069 | 50
1422 | 59 70
1545 1677 | | 74
1426 | 68 58 | 48 | 36 | | Aunu: | 531 | 190 1009 | 1422 | 1343 10// | 1615 | 1420 | 1206 904 | 559 | 433 | | | | | | | | | | | | | NEW YORK (CEI | | RK), NEW YORK | TD 45 | TOFA | ELEVATION | | TOCE | | AT = 40.8 | | SOUTH-VERT | TB30
(M= 1) | TB40
(M= 1) | TB45
(M= 1) | TB50
(₩= 1) | TB55
(M= 1) | TB60
(M=12) | TB65
(M±12) | TB70
(M=12) | TB80
(M=12) | | VT 1/00 | 231,35 | 69.98 | 45.25 | 32.77 | 25.61 | 20.52 | 16.85 | 14.29 | 10,96 | | VT2/DD
VT3/DD | 197.93
171.92 | 59.87
52.00 | 38.71
33.62 | 28.04
24.35 | 21.91
19.03 | 17.56
15.25 | 14.42
12.52 | 12.23
10.62 | 9.38
8.15 | | MONTHLY DD | 79 | 260 | 402 | 555 | 710 | 711 | 866 | 1021 | 1331 | | ANNUAL DD
PARAMETER A | 196
.325 | 781
.448 | 1330
. 459 | 2041
.465 | 2908
. 487 | 3914
.547 | 5085
.622 | 6473
.689 | 9768
.771 | | AZIMUTH AND | TILT CO | EF. | | | | | | | | | A1
A2 | .2016
.7682 | .2075
.6303 | .2450
.6848 | .2885
.7333 | .3114
.7663 | .0831
.8152 | .0864
.7817 |
.0868
.7698 | .0886
.8259 | | A3 | -,6616 | 6053 | 6662 | 7200 | 7726 | 8871 | 8772 | 8895 | -1.0006 | | A4
A5 | .3912
.2068 | .3640
.1251 | . 4025
. 1302 | .4315
.1361 | . 4562
. 1260 | .5336
.0173 | .52 3 5
0019 | .527 <i>1</i>
~.0203 | .5872
0532 | | 81 | 1092 | 1092 | 1092 | 1092 | 1092 | 0363 | ~.0363 | 0363 | 0363 | | 82
83 | -1.1468
.8010 | -1.1468
.8010 | -1,1468
.8010 | -1.1468
.8010 | -1.1468
.8010 | -1.1650
-8336 | ~1.1649
.8335 | -1.1650
.8336 | -1.1649
.8335 | | 84 | .6799 | .6799 | .6799 | .6799 | .6799 | .6492 | .6492 | .6492 | .6492 | | 85
Total annual i | -1.2024
TRANSMITI | -1.2024
TED RADIATION | -1.2024 | -1.2024 | -1.2024 | -1.1640 | -1.1640 | -1.1640 | -1.1640 | | DUE SOUTH A | ND VERTIC | CAL QTA1 | = 237904 | | TA2 = 19840 | | QTA3 = | | 1000 | | AZIMUTH AND MONTH: | TILT COI
JAN | EF. Cl≂
FEB MAR | .0560
APR | C2 =3376
MAY JUN | ; | 2214
AUG | C4 = 1.5814
SEP OCT | C5 =-1
NOV | . 1662
Dec | | TAVE: | 32 | 32 39 | 52 | 59 67 | 73 | 74 | 66 57 | 47 | 37 | | QHOR: | 466 | 727 1035 | 1352 | 1657 1720 | 1625 | 1502 | 1189 906 | 524 | 379 | | | | | | | | | | | | | ROCHESTER, N | | | | | ELEVATION | | | | AT = 43.1 | | SOUTH-VERT | TB30
(M≈ 1) | TB40
(M= 1) | TB45
(M= 1) | TB50
(M≏12) | TB55
(M≃12) | TB60
(M=12) | TB65
(M=12) | T870
(M=12) | T880
(M≈ 12) | | VT 1/00 | 39.16 | 19.88 | 15.52 | 12.63 | 10.29 | 8.68 | 7.51 | 6.61 | 5.34 | | VT2/0D
VT3/0D | 33.35
28.94 | 16.93
14.69 | 13.22
11.47 | 10.77
9.35 | 8.77
7.61 | 7.40 | 6.40
5.56 | 5.64 | 4.55 | | MONTHLY DD | 28.94
274 | 540 | 691 | 9.35
681 | 836 | 6.42
991 | 5.56
1146 | 4.89
1301 | 3.95
1611 | | ANNUAL DD | 741 | 1873 | 2656 | 3565 | 4608 | 5781 | 7110 | 8583 | 11912 | | PARAMETER A
AZIMUTH AND | .577
 TILT COI | .6 44
Ef. | .676 | .719 | .807 | . 879 | .942 | .997 | 1.077 | | Αl | 0731 | 0619 | 0573 | .0275 | .0248 | .0234 | -0227 | .0224 | .0228 | | 2A
6A | . 1853
1939 | .2068
2278 | .2168
2420 | .3497
3929 | .3214
~.3670 | .3068
3563 | .2995
3540 | .2973
35 77 | .3104
3871 | | A4 | . 1629 | . 1769 | . 1851 | -2863 | .2668 | .2583 | .2558 | . 2574 | .2756 | | A5
B1 | 0062
0238 | 0087
0238 | 0104
0238 | 0355
0628 | 0369
0628 | 0396
0628 | 0432
0628 | 0477
062 8 | 0601
0628 | | B2 | 9112 | 9112 | 9112 | 9583 | 9583 | ~,9583 | 9583 | ~.9583 | 9583 | | 83
84 | .6093
.7106 | .6093
.7106 | .6093
.7106 | .6749
.6459 | .6748
.6459 | .6748
.6459 | .6748
.6459 | .6748
.6459 | .6748
.6459 | | B5 | -1.0511 | -1.0511 | -1.0511 | -1.0243 | -1.0244 | -1.0244 | -1.0244 | -1.0244 | -1.0244 | | TOTAL ANNUAL TOTAL ANNUAL TO DUE SOUTH A | | | = 213006 | ^ | | E 7 | | | | | AZIMUTH AND | | | 0115 | C2 =2019 | TA2 = 17715
C3 = | 5/
-,3521 | QTA3 =
C4 = 1.6364 | | . 1 125 | | MONTH: | JAN | FEB MAR | APR | MAY JUN | JUL | AUG | SEP OCT | NOV | DEC | | TAVE:
OHOR: | 22
343 | 22 31
564 907 | 46
1353 | 55 67
1608 1810 | | 68
1524 | 62 51
1180 721 | | 28
266 | | 4 | - 1- | *** | | .000 1010 | | 1364 | 1700 121 | 400 | EVU | | SYRACUSE, NEW SOUTH-VERT. VT1/OD VT2/OD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND 1 | TB30 (M= 1) 39.09 33.33 28.92 315 793 .492 ILLT COEF. | TB40
(M= 1)
20.90
17.81
15.46
589
1894 | TB45
(M= 1)
16.60
14.15
12.28
741
2641 | TB50
(M≈ 1)
13.75
11.72
10.18
894
3513
.643 | ELEVATION
T855
(M= 12)
11.67
9.95
8.64
801
4512
.678 | N = 407
T860
(M=12)
9.85
8.39
7.29
950
5669 | TB65
(M=12)
8.49
7.23
6.28
1102
6983
.825 | TB70
(M=12)
7.44
6.34
5.51
1256
8449
.887 | AT = 43.1
TB80
(M=12)
5.97
5.09
4.42
1566
11793 | |--|--|--|--|--|--|--|--|---|--| | B2
B3
B4
B5
Total Annual Tr | MANSMITTED R | 0196
.3531
3693
.1954
.0578
0063
9528
.6510
.6935
-1.0676 | 0208
.3611
3824
.2088
.0518
0063
9528
.6510
.6935 | 0209
.3650
3934
.2210
.0432
0063
9528
.6510
.6935
-1.0677 | 0580
.3637
4148
.3052
0390
.0115
9490
.6635
.6529
1.0270 | 0506
.3434
3995
.2919
0422
.0115
9490
.6635
.6529 | 0445
.3314
3934
2851
0460
.0115
9490
.6635
.6529
-1.0271 | 0396
.3279
3976
.2852
0513
.0115
9490
.6635
.6529
-1.0270 | 0334
.3470
4393
.3080
0667
.0115
9490
.6635
.6529
-1.0270 | | DUE SOUTH AND
AZIMUTH AND T
MONTH: J
TAVE: | VERTICAL | OTAI | = 211744
0261
APR
47
1339 | 01
C2 =2099
MAY JUN
57 66
1573 1736 | TA2 = 17623
C3 = -
JUL
70
1757 | .3345
AUG
69 | QTA3 = 15
C4 = 1.5985
SEP OCT
62 50
1144 738 | 51435
C5 =-1.
NOV
40
395 | 0974
DEC
29
290 | | VT2/90 | TB30
(M= 2)
532.54
450.93
390.86
45
156
496 | TB40
(M= 2)
149.37
126.48
109.63
159
655
.441 | TB45
(M= 2)
93.59
79.25
68.69
254
1095 | T850
(M= 2)
64.46
54.58
47.31
369
1668
.474 | ELEVATION
T855
(M= 2)
47.73
40.42
35.03
498
2419
.486 | # = 2169
TB60
(M= 2)
37.47
31.73
27.50
635
3372
.494 | TB65
(M= 2)
30.71
26.00
22.54
775
4536
.505 | TB70
(M= 2)
26.01
22.02
19.09
915
5936
.517 | T = 35.4
TB80
(M= 2)
19.91
16.86
14.61
1195
9202
.469 | | A1
A2
A3
A4
A5
B1
B2
B3
B4 | 0438
6194
5593
3924
1268
.0267
8004
.3294
1.1329
1.2786 | 0609
4459
.3511
2720
1283
.0267
8004
.3294
1.1328 | 0638
3824
2830
2269
1237
.0267
8004
3294
1.1329
-1.2786 | 0630
3175
.2150
1807
1182
.0267
8004
.3294
1.1329
-1.2786 | 0650
2469
.1322
1270
1187
.0267
8004
.3294
1.1329
-1.2786 | 0683
1571
.0211
0574
1228
.0267
8004
.3294
1.1329
-1.2786 | ~.0706
0352
1324
.0364
1294
.0267
8004
.3294
1.1329
-1.2786 | 0721
.1188
3302
.1548
1386
.0267
8004
1.1329
-1.2786 | 0862
.5346
8954
.4780
1769
.0267
8004
.3294
1.1329
-1.2786 | | DUE SOUTH AND T
AZIMUTH AND T
MONTH: J.
TAVE: | VERT I CAL | QTA3 : | = 277780
0128
APR
56
1686 | OT
C2 =3038
MAY JUN
64 69
1827 1830 | A2 = 23161
C3 = -
JUL
71
1774 | .3116
AUG
70 | QTA3 = 15
C4 = 1.6831
SEP OCT
63 55
1356 1148 | 09158
C5 ≈-1.
NOV
44
851 | 1941
DEC
40
655 | | CAPE HATTERAS, SOUTH-VERT. VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DO PARAMETER A AZIMUTH AND T | TB30
(M= 2)
NA
NA
NA
NA
9
15 | LINA
TB40
(M= 2)
416.09
352.52
305.63
57
152
.529 | TB45
(M= 2)
207.51
175.81
152.43
114
355
.533 | TBS0
(M= 2)
121.35
102.81
89.14
195
700
.458 | ELEVATION
TB55
(M= 2)
80.97
68.60
59.48
292
1212
.389 | = 7
TB60
(M= 2)
57.82
48.99
42.47
408
1881
.383 | TB65
(M= 1)
43.09
36.74
31.91
583
2739
.408 | T870
(M= 1)
34.08
29.06
25.23
738
3787
.434 | T = 35.3
TB80
(M= 1)
23.99
20.46
17,77
1048
6603
.489 | | A1
A2
A3
A4
A5
B1
B2
B3
B3
B4
B5
Total Annual Try | NA
NA
NA
NA
NA
NA
NA
NA | .0324
4642
.3138
3536
1185
0516
8319
.3978
1.1301
1.2625 | .0396
4445
.2819
3317
1237
0516
8319
.3978
1.1301
-1.2626 | .0614
4719
.2718
3575
1406
0516
8319
.3978
1.1301 | .0957
4292
.1766
3339
1575
0516
8319
.3978
1.1301
-1.2626 | .1160
2916
.0083
2328
1616
0516
8319
.3978
1.1301
-1.2626 | 0114
.6428
7153
.6197
0382
0118
-1.0059
.5975
.8397
-1.2575 | .0018
.7539
8784
.7028
0620
0118
-1.0059
.5975
.8397
-1.2575 | .0185
.9908
-1.2371
.8807
1149
0118
-1.0059
.5976
.8397
-1.2574 | | DUE SOUTH AND TI
AZIMUTH AND TI
MONTH: 34 | VERTICAL
ILT COEF,
AN FEB
46 45 | QTATES
QTATE
CT =
MAR
51
1274 | 283396
.0086
APR
60
1739 | QT.
C2 =2553
MAY JUN
67 75
1961 2048 | A2 = 23602
C3 = -
JUL
78
1898 | .3715
AUG
77 | QTA3 = 20
C4 = 1.7536
SEP OCT
73 65
1506 1171 | 12827
C5 =-1.
NOV
55
898 | 2141
DEC
47
637 | | CHARLOTTE, NOR | | TD 40 | *0.45 | | ELEVATION | | | | = 35.2 | |---|------------------------------|----------------------------|----------------------------|-------------------------------
----------------------------|----------------------------|-------------------------------|--------------------------------|----------------------------| | | 637.55 | TB40
(M= 2)
164.48 | TB45
(M= 2)
106.47 | T850
(M= 2)
75.45 | TB55
(₩= 2)
55.38 | TB60
(M= 2)
42.47 | T865
(M= 2)
33.94 | TB70
(M= 2)
28.00 | TB90
(M= 2)
20.67 | | | | 139.18
120.62
134 | 90.09
78.08
207 | 63.84
55.33
293 | 46.86
40.61
399 | 35.94
31.15
520 | 28.72
24.89
650 | 23.69
20.53
789 | 17.49
15.16
1068 | | ANNUAL DD
PARAMETER A | 103
.547 | 464
.539 | 798
-509 | 1265
.475 | 1975
. 468 | 2641
. 468 | 3574
.483 | 4708
.519 | 7644
,578 | | | 05 30 - | 0642
6295 | 0745
6425 | 0856
6453 | 0915
5951 | 0961
5242 | 0968
4246 | 0925
2913 | 0873
.0267 | | | | .6066
2910
1766 | .6152
2883
1866 | .6106
2754
1986 | .5506
2330
2010 | .4670
1768
2020 | .3521
1052
1984 | . 1986
0173
1900 | 2000
.2095
1978 | | B1
B2 | .0524
7450 - | .0524
7450 | 83
84
85 - | 1.2534 -1 | .2628
1.1155
1.2534 | .2628
1.1155
-1.2534 | .2628
1.1155
-1.2535 | .2628
1.1155
-1.2535 | .2628
1.1155
-1.2535 | .2628
1.1155
-1.2534 | . 2628
1. 1154
-1. 2534 | .2628
3.1155
-1.2535 | | TOTAL ANNUAL TR
DUE SOUTH AND
AZIMUTH AND T | ANSMITTED RA | ADIATION | 284778 | | A2 = 237355
C3 = - | | QTA3 = 20
C4 = 1.7068 | | 1067 | | MONTH: J
TAVE: | AN FEB
39 41 | MAR
49 | APR
60 | MAY JUN
69 74 | 3UL
76 | AUG
76 | SEP OCT
72 60 | NOV
49 | DEC
42 | | QHOR: 7 | 66 904 | 1343 | 1643 | 1825 1994 | 1864 | 1768 | 1450 1224 | 875 | 634 | | CHERRY POINT, | NORTH CAROLI | INA
TB40 | T845 | TB50 | ELEVATION
TB55 | ≂ 36
TB60 | 7865 | LA'
TB70 | T = 34.9
TB80 | | SOUTH-VERT.
VT 1/DD | (M= 1) { | (M= 1)
374.01 | (M= 1)
198.25
169.14 | (M= 1)
120.04 | (M≈ 1)
81.13 | (M= 1)
59.43 | (M <u>≈</u> 1)
45.69 | (M= 1)
36.53 | (M= 1)
25.85
22.05 | | VT2/DD
VT3/DD
MONTHLY DD | NA : | 319.08
277.10
73 | 146.88
138 | 102.41
88.93
228 | 69.22
60.11
337 | 50.70
44.03
460 | 38.98
33.85
598 | 31.17
27.06
7 4 8 | 19.15
1057 | | ANNUAL DD
PARAMETER A
AZIMUTH AND 1 | 23
NA
CULT COSE | 184
.621 | 412
.561 | 7 64
.520 | 1260
.485 | 1899
. 463 | 2708
. 4 55 | 3732
. 46 7 | 6532
. 502 | | A1
A2 | NA
NA | .0419
.2496 | .0662
.3005 | .0832
.3612 | .0981
.4566 | . 1097
-5576 | .1183
.6709 | . 1214
. 7908 | .1230
1.0721 | | A3
A4
A5 | na
Na
Na | 2594
.1976
.0059 | 3305
.2360
.0016 | 4082
.2774
.0016 | 5235
.3413
.0037 | 6507
.4113
.0010 | 7982
.4907
0057 | 9631
.5782
01 9 8 | -1.3641
.7909
0618 | | B1
B2
B3 | | 0571
1.0478
.6382 | 0571
-1.0478
.6382 | 0571
-1.0478
.6382 | 0571
-1.0478
.6381 | 0571
-1.0478
.6382 | 0571
-1.0478
.6382 | 0571
-1.0478
.6382 | 0571
-1.0478
.6382 | | B4
B5 | NA
NA – | .8595
1.2627 | .8595
-1.2626 | .8595
-1.2627 | .8595
-1.2627 | .8595
-1.2627 | .8595
-1.2627 | .8595
-1.2627 | .8595
-1.2627 | | TOTAL ANNUAL TR
DUE SOUTH AND
AZIMUTH AND T | VERTICAL | QTA1 = | 289407
.0102 | C2 =2834 | TA2 = 241299
C3 = - | .3330 | QTA3 = 20
C4 = 1.6988 | C5 =-1. | | | TAVE: | JAN FEB
45 45
789 1048 | MAR
52
1448 | APR
61
1732 | MAY JUN
69 75
1928 1997 | JUL
78
1867 | AUG
77
1662 | SEP OCT
74 64
1398 1125 | NOV
54
893 | DEC
47
732 | | 4 | 1040 | ,,,,, | ,,,,, | 1027 | ,,,,, | ,021 | | | | | GREENSBORO, NO | TB30 | A
TB40 | TB45 | TB50 | ELEVATION
TBS5 | = 886
TB60 | T865 | TB70 | T = 36.1
TB80 | | SOUTH-VERT.
VT1/DD
VT2/DD | 606.77 | (M= 1)
162.51
138.74 | (M= 1)
100.18
85.53 | (M= 1)
68.84
58.77 | (M= 1)
51.36
43.85 | (M= 2)
40.37
34.18 | (M= 2)
32.48
27.50 | (M= 2)
27.17
23.00 | (M= 2)
20.47
17.33 | | VT3/DD
MONTHLY DD | 449.91
46 | 120,50
172 | 74.28
280 | 51.04
407 | 38.09
545 | 29,63
576 | 23.84
716 | 19.94
856 | 15.02
1 136 | | ANNUAL DD
PARAMETER A
AZIMUTH AND 1 | | .515
.513 | 929
.455 | 1487
. 443 | 2183
.450 | 3022
.470 | 4023
.509 | 5215
.539 | 8231
.564 | | A1
A2
A3 | .0598 | 0677
.3408
3409 | 0846
.4400
4311 | 0946
.5099
4999 | 1003
.5685
5713 | 0047
4310
.2500 | 0126
3038
.1138 | 0201
1729
0370 | 0368
.1393
4318 | | A4
A5 | .0537
.0012 | .2427
.0579 | .3109
.0796 | .3618
.0884 | . 4104
. 0827 | 1720
2262 | 0831
2155 | .0111
2116 | .2467
2269 | | B1
B2
B3 | .0633
-1.0544 -
.6400 | .0633
1.0544
.6400 | .0633
-1.0544
.6400 | .0633
-1.0544
.6400 | .0633
-1.0544
.6400 | .0376
7843
.3283 | .0376
7843
.3283 | .0376
7843
.3283 | .0376
7843
.3283 | | B4 | .8034
-1.2795 - | .8034
1.2794 | .8034
-1.2794 | .8034
-1.2795 | ,8034
-1,2795 | 1.1089
-1.2476 | 1.1089
-1.2476 | 1.1089
-1.2476 | 1.1089
-1.2476 | | DUE SOUTH AND | D VERTICAL
TILT COEF. | OTA1 : | 290432
-,0121 | C2 =3077 | TA2 = 24222
C3 = - | .3185 | QTA3 = 20
C4 = 1.6775 | ¢5 ±-1. | | | TAVE: | JAN FEB
37 39
750 953 | Mar
46
1350 | APR
59
1775 | MAY JUN
66 73
1785 2009 | | AUG
75
169 1 | SEP OCT
69 58
1376 1193 | NOV
49
854 | DEC
40
668 | | | | | | | | | | | | | RALEIGH-OURHAM, NORTH CAROLINA
TB30 TB40
SOUTH-VERT. (M≈ 2) (M≈ 2)
VT1/DD 599.43 152.80
VT2/DD 507.57 129.39
VT3/DD 440.03 112.17
MONTHLY DD 37 144
ANNUAL DD 84 468
PARAMETER A .539 .542
AZIMUTH AND TILT COEF. | T845 TB50 (M= 2) (M= 1) 100.23 63.98 84.87 54.48 73.57 47.29 220 306 841 1346 .436 .504 | ELEVATION = 440
TB55 TB60
(M= 1) (M= 1)
45.05 33.90
38.37 28.87
33.30 25.06
434 577
1981 2780
.555 .599 | 26.93 22
22.94 18
19.91 16
727
3753 4 | LAT = 35.9
1870 TB80
1) (M= 1)
2.27 16.47
3.96 14.03
3.46 12.18
879 1188
4910 7904
648 .693 | |--|--|--|---|---| | A107310795 A236543509 A3 .3990 .3757 A422662)40 A502330264 B1 .0346 .0346 B277277727 B3 .3505 .3505 B4 1.0960 1.0960 B5 -1.1827 -1.1827 TOTAL ANNUAL TRANSMITTED RADIATION | 1019 .0906
4299 .3593
.45754746
2586 .2594
03460363
77279700
.3505 .6290
1.0961 .8657
-1.1827 -1.1407 | .0800 .0727 .3662 .390048505186 .2653 .2835038004200306030697009700 .6290 .6290 .8656 .8656 -1.1406 -1.1406 | .4395
58776
.3203 .3
04926
03066
97006 | 0648 .0566
0017 .6540
01508945
0668 .4855
03060306
07009700
0290 .6290
0656 .8656
04406 -1.1407 | | DUE SOUTH AND VERTICAL QTA1 | 58 66 | QTA2 = 217348
62 | SEP OCT N
70 57 | 3
25 =-1.1075
30V DEC
50 41
347 636 | | BISMARK, NORTH DAKDTA TB30 TB40 SDUTH-VERT. (M= 1) (M= 1) VT1/00 37.81 24.92 VT2/DD 32.40 21.35 VT3/DD 28.15 18.55 MONTHLY DD 573 869 ANNUAL DD 1955 3413 PARAMETER A .513 .564 AZIMUTH AND TILT COEF. | TB45 TB50 (M= 1) (M= 1) 21.16 18.38 18.13 15.75 15.76 13.68 1023 1178 4330 5365 .585 .611 | ELEVATION = 1647
TB55 TB60
(M=12) (M=12)
16.16 14.41
13.87 12.37
12.05 10.75
1280 1435
6522 7789
.642 .670 | (M=12) (M=
13.01 11
11.16 10
9.70 €
1590 1
9166 10 | LAT = 46.8
TB70 TB80
-12) (M=12)
1.85 10.07
1.17 8.64
3.84 7.51
1745 2055
1680 14025
717 .742 | | A1 .0405 .0457 A2 .2773 .3684 A3 -2852 -3779 A4 .1645 .2264 A50044 .0042 B102600260 B2 -1.1645 -1.1645 B3 .8123 .8123 B4 .5224 .5223 B5 -1.1847 -1.1846 | .0475 .0483
.4105 .4444
42144581
.2567 .2834
.0071 .0079
02600260
-1.1645 -1.1645
.8123 .8123
.5224 .5223
-1.1847 -1.1846 | 08990820
.6745 .6937
55915963
.4304 .4517
.1295 .1165
.0264 .0264
-1.2259 -1.2259
.8804 .8804
.4391 .4390
-1.1902 -1.1901 | .7180
6405
4773
.1026
.0264
-1.2259
.8804 | 3804 .8804
1391 .4390 | | | .0165 | UN JUL AUG
63 70 72 | SEP OCT A
55 44 | 75 =-1.2829
KOV DEC
28 13
109 399 | | FARGO, NORTH DAKOTA TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 23.83 17.32 VT2/DD 20.43 14.85 VT3/DD 17.75 12.90 MONTHLY DD 815 1121 ANNUAL DD 2229 3/34 PARAMETER A .644 .678 AZIMUTH AND TILT COEF. | TB45 TB50 (M= 1) (M= 1) 15.22 13.57 13.04 11.63 11.34 10.11 1276 1431 4643 5650 .692 .712 | ELEVATION = 899
TB55 TB60
(M= 1) (M= 1)
12.24 11.15
10.49 9.56
9.12 8.31
1586 1741
6775 8027
.739 .769 | (M= 1) (M=
10.24 9
8.78 8
7.63 7
1896 2
9408 10 | LAT = 46.9 TB80 1) (H= 1) 0.46 8.22 1.11 7.05 1.05 6.13 1051 2361 1905 14213 824 .854 | | A102870330
A2 .2372 .3119
A322152993
A4 .1085 .1545
A5 .0399 .0475
B1 .0358 .0358
B2 -1.1942 -1.1942
B3 .8396 .8396
B4 .5228 .5228
B5 -1.1857 -1.1856 | 03450347
.3473 .3746
33793701
.1778 .1979
.0494 .0487
.0358
.0358
-1.1942 -1.1942
.8395 .8396
.5228 .5228
-1.1857 -1.1856 | 03400329
.3978 .4183
40094302
.2177 .2371
.0449 .0396
.0358 .0358
-1.1942 -1.1942
.8396 .8396
.5228 .5228
-1.1856 -1.1856 | .4397 .4
46245
.2580 .2
.0326 .0
.0358 .0
-1.1942 -1.1
.8396 .8 | 396 .8396
228 .5228 | | | 41 56 | UN JUL AUG
65 70 68 | SEP OCT N
59 48 | 5 =-1.2531
OV DEC
29 12
60 351 | | MINOT, NORTH DAKOTA TB30 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 26.04 18.09 VT2/DD 22.34 15.52 VT3/DD 19.42 13.49 MONTHLY DD 679 ANNUAL DD 2013 AVAILABLE A 696 AZIMUTH AND TILT COEF. | T845
(M= 1)
15.62
13.40
11.65
1133
4426 | TB50 TB55 (M= 1) (M= 1) 13.74 12.26 11.79 10.52 10.24 9.14 1288 1443 5477 6641 .777 .803 | 9.50
8.26
1598
7939 | T865
(M= 1)
10.09
8.66
7.53
1753
9373
.858 | TB70 TB80
(M= 1) (M= 1)
9.27 7.98
7.95 6.84
6.91 5.95
1908 2218
10926 14308
.881 .906 | |---|---|--|---|--|--| | A1 .0698 .0701 A2 .2003 .2715 A319232666 A4 .1138 .1530 A5 .0230 .0322 B101120112 B2 -1.2178 -1.2178 B3 .8694 .8694 B4 .4797 .4797 B5 -1.1841 -1.1841 TOTAL ANNUAL TRANSMITTED RADIATION | .0689
.3033
3026
.1723
.0342
0112
-1.2178
.8695
.4797 | .0674 .0655
.3347 .3633
33963747
.1926 .2123
.0347 .0340
01120112
-1.2178 -1.2178
.8695 .8695
.4797 .4797
-1.1841 -1.1841 | .3911
4103
.2328 | .0613
.4179
4468
.2543
.0270
0112
-1.2178
.8695
.4797
-1.1841 | .0595 .0579
.4474 .5264
-4885 ~.5995
.2788 .3442
.0204 .0027
01120112
-1.2178 -1.2178
.8695 .8695
.4797 .4797
-1.1841 -1.1841 | | | = 294301
.0426
APR
39
1417 | OTA2 = 24 C2 =3724 | =1974
AUG
68 | QTA3 = 2
C4 = 1.4105
SEP OCT
56 45
1240 881 | 12431
C5 =-1.2506
NOV DEC
28 15
441 316 | | AKRON-CANTON, OHIO TB30 TB40 SOUTH-YERT. (M= 1) (M= 1) VT1/DD 67.23 30.80 VT2/DD 57.38 26.29 VT3/DD 49.82 22.82 MONTHLY DD 222 484 ANNUAL DD 560 1516 PARAMETER A .499 .563 AZIMUTH AND TILT COEF. | TB45
(M=12)
23.23
19.83
17.21
471
2204
.604 | TB50 TB55 (M=12) (M=12) 17.95 14.56 15.32 12.43 13.30 10.79 610 751 3019 3977 .686 .760 | (M= 12)
12.17
10.39
9.02
899
5092 | TB65
(m=12)
10.40
8.87
7.70
1053
6358
.884 | TB70 TB80
(M=12) (M=12)
9.06 7.21
7.73 6.15
6.71 5.34
1208 1518
7774 11071
.933 1.007 | | A1 .0835 .0663
A2 .3636 .3950
A336404065
A4 .1955
A5 .0878 .0832
B1 .0085 .0085
B2 -1.0302 -1.0302
B3 .6935 .6935
B4 .7177 .7177
B5 -1.1433 -1.1433 | 0548
.3508
4156
.3066
0607
.0538
-1.0038
.6941
.6767
-1.0815 | 04910448
.3412 .3358
40484007
.2909 .2818
05230478
.0538 .0538
-1.0038 -1.0038
.6941 .6942
.6767 .6766
-1.0815 -1.0815 | .3372
4070
.2805
0472
.0538
-1.0038
.6941
.6767
-1.0815 | 0388
.3440
4218
.2856
0499
.0538
-1.0038
.6941
.6767
-1.0815 | 03680345
.3553 -3958
44285103
.2955 .3330
05450702
.0538 -1.0038
-1.0038 -1.0038
.6941 .6942
.6767 .6767
-1.0815 -1.0815 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA1 AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 24 27 36 QHOR: 431 664 928 | = 229591
.0278
APR
48
1403 | OTA2 = 19
C2 =2117 | 69 | QTA3 = 10
C4 = 1.6358
SEP OC1
62 53
1179 910 | 64169
C5 =-1.1220
NOV DEC
41 31
528 326 | | C1NCINNATI, OHIO TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 82.90 40.15 VT2/DD 70.69 34.24 VT3/DD 61.37 29.72 MONTHLY DD 190 392 ANNUAL DD 329 1055 PARAMETER A .734 .869 AZIMUTH AND TILT COEF. | TB45
(M= 1)
30.20
25.75
22.36
521
1634
.817 | T850 T855 (M= 1) (M= 1) 23.75 19.43 20.25 16.57 17.58 14.38 662 810 2335 3162 .784 .764 | 13.94
12.10
962
4126 | TB65
(M= 1)
14.09
12.01
10.43
1117
5250
.775 | IAT = 39.1
TB70 TB80
(M= 1) (M= 1)
12.37 9.95
10.55 8.48
9.16 7.36
1272 1582
6563 9680
.795 .831 | | A1 .0686 .0920 A2 .1362 .2047 A314512354 A4 .0815 .1283 A5 .0142 .0120 B106560656 B299179917 B3 .6558 .6559 B4 .7585 .7585 B5 -1.1280 -1.1280 TOTAL ANNUAL TRANSMITTED RADIATION | .1117
.2616
3031
.1659
.0140
0656
9917
.6559
.7585
-1.1279 | .1240 .1314
.3072 .3464
35744053
.1966 .2243
.0150 .0144
06560656
99179917
.6559 .6559
.7585 .7585
-1.1280 -1.1280 | .3758
4438
.2477
.0108
0656
9918
.6559 | .1308
.4020
4816
.2715
.0038
0656
9917
.6559
.7585
-1.1280 | .1264 .1190
.4316 .5091
52626443
.2998 .3725
00610320
06560556
99179917
.6559 .6559
.7585 .7585
-1.1280 -1.1280 | | | = 236072
.0244
APR
52
1370 | QTA2 = 19
C2 =2208 | =3424
AUG
74 | QTA3 = 1:
C4 = 1.6367
SEP OCT
65 56
1205 965 | 68869
C5 =-1.1058
NOV DEC
43 38
563 451 | | COLUMBUS, OHIO TB30 SOUTH-VERT. (M= 1) VT1/DD 98.46 VT2/DD 83.97 VT3/DD 72.89 MONTHLY DD 158 ANNUAL DD 388 PARAMETER A .630 AZIMUTH AND TILT COEF. | TB40 TB41
{M= 1) (M= 1
40.68 29.8
34.69 25.4
30.11 22.1
382 52
1216 183
.615 .60 | 1850
(M= 1)
23.32
19.89
17.27
667
2 2576
611 | ELEVATION = 833
TB55 TB60
(M= 1) (M= 1)
19.01 16.01
16.21 13.65
14.07 11.85
818 971
3462 4507
.628 .654 | TB65
(M=12)
13.46
11.49
9.98
968
5722 | LAT = 40.0
1870 T890
(M=12) (M=12)
11.60 9.10
9.90 7.76
8.60 6.74
1123 1433
7112 10324
.772 .846 | |---|--|--|--|--|---| | A1 .0391
A2 .2416
A32278
A4 .1356
A5 .0554
B1 .0233
B29886
B3 .6488
B4 .7487 | .0526 .054
.3190 .349
-3192 -353
.1898 .213
.0596 .061
.0233 .023
-9886 -988
.6488 .648
.7487 .748
-1.1370 -1.136 | 4 .0534
9 .3755
-3854
10 .2348
10 .0588
10 .0233
-9886
10 .6488
17 .7487 | .0506 .0464
.3970 .4178
-41654505
.2550 .2760
.0530 .0440
.0233 .0233
-98869886
.6488 .6488 | 0554
.5096
5655
.3701
0074
.0701
-1.0203
.6963 | 05160479
.5081 .5502
57936616
.3757 .4213
01790434
.0701 .0701
-1.0203 -1.0203 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEE TAVE: 28 3 QHOR: 467 659 | | 01
C2 =2383
MAY JUN
60 70
1642 1875 | JUL AUG
73 71 | QTA3 = 1
C4 = 1.6129
SEP OCT
65 53
1235 941 | 67455
C5 ==1.1093
NOV DEC
44 33
569 383 | | DAYTON, OHIO | TB40 TB4
(M=12) (M=12
37.76 27.2
32.21 23.2
27.96 20.1
337 46
1315 193
.656 .70 | 7850
(M=12)
7 21.05
5 17.95
9 15.58
7 605
5 2678
8 .747 | ELEVATION = 1004
TB55 TB60
(M=12) (M=12)
16.93 14.08
14.45 12.01
12.54 10.42
751 904
3559 4572
.789 .828 | TB65
(M=12)
12.02
10.25
8.90
1059
5729
.869 | TB70 TB80 (M=12) (M=12) 10.48 B.35 8.94 7.12 7.76 6.18 1214 1524 7063 10245 .914 .988 | | A1 .1274
A2 .2647
A32472
A4 .1060
A5 .0931
B10134
B2 -1.0056
B3 .6595
B4 .7510
B5 -1.1525 | 0733064
.2466 .262
2745293
.2562 .263
0653060
.0570 .057
9888988
.6634 .663
.6973 .697 | 2 ~.0578
4 .2770
83134
3 .2718
10581
0 .0570
9888
4 .6634
3 .6973 | 05220479 .2884 -298633183498 .2786 .285605830602 .0570 .05709888 -9888 .6634 .6634 .6973 .6974 -1.0905 -1.0905 | .3090
3689
.2931
0630
0570
9888
.6634
.6974 | 04110369
.3207 .3626
39074616
.3016 .3369
06670813
.0570 .0570
98889888
.6634 .6634
.6974 .6973
-1.0905 -1.0905 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 29 3 QHOR: 523 73 | QTA1 = 24263
C1 = .0255
B MAR APR
1 37 51 | 4 0
C2 =2396
MAY JUN
62 71
1738 1890 | JUL AUG
73 73 | QTA3 = 1.6397
SEP OCT
65 SS
1286 967 | NOV DEC
42 30 | | TOLEDO, OHIO TB30 SOUTH-VERT. (M=12) VT1/DD 69.51 VT2/DD 59.32 VT3/DD 51.49 MONTHLY DD 163 ANNUAL DD 624 PARAMETER A .533 AZIMUTH AND TILT COEF. | TB40 TB4
(M=12) (M=12
29.37 21.7
25.07 18.5
21.76 16.1
385 52
1644 237
.701 .76 | (M=12)
17.08
6 14.57
1 12.65
0 662
3 3242 | ELEVATION = 692
T855 T860
(M=12) (M=12)
13.90 11.68
11.86 9.97
10.29 8.65
814 968
4235 5364
.882 .934 | (M=12)
10.07
8.59
7.46
1123
6637
 LAT = 41.6
TB70 TB80
(M=12) (M=12)
B.85 7.12
7.55 6.08
6.55 5.28
1278 1588
8071 11349
1.019 1.076 | | A11598
A2 .2899
A34219
A4 .2687
A51190
B1 .0542
B2 -1.0108
B3 .7142
B4 .6652
B5 -1.0697
TOTAL ANNUAL TRANSMITTED | 1267115
.2382 .242
3433340
.2288 .229
0942 .085
.0542 .054
-1.0108 -1.010
.7142 .714
.6651 .665
-1.0697 -1.069 | 4 .2440
03365
5 .285
50790
2 .0542
8 -1.0108
2 .7142
2 .6652 | 09180830
-24512527
33573452
2281 .2340
07530749
.0542 .0542
-1.0108 -1.0108
.7142 .7142
.6652 .6652
-1.0697 -1.0697 | .2634
3597
.2430
0760
.0542
3 -1.0108
.7142
.6651 | 06980621
.2773 .3223
37994465
.2553 .2960
07910917
.0542 .0542
-1.0108 -1.0108
.7142 .7142
.6651 .6652
-1.0697 -1.0697 | | DUE SOUTH AND VERTICAL AZEMUTH AND TILT COEF. MONTH: JAN FE TAVE: 25 2 QHOR: 441 71 | OTA1 = 24105
C1 = .0118
B MAR APR
6 34 49 | 1 Q
C2 =2769
MAY JUN
57 68
1687 1898 | JUL AUG
77 69 | QTA3 =
C4 = 1.5896
SEP OCT
62 52
1283 942 | 172717
C5 ==1.1382
NOV DEC
41 28
514 338 | | YOUNGSTOWN, OHIO | 7040 | 70. 15 | | ELEVATION | | | LA | T = 41.3 | |--|---|---------------------------|---------------------------|------------------------------|---------------------------|-------------------------------------|---------------------------|----------------------------| | TB30
SOUTH-VERT. (M= 2)
VT]/DD 49.87 | (M= 2)
27.11 | TB45
(M≈ 2)
21.16 | TB50
(M=12)
16.10 | TB55
(M=12)
12.83 | TB60
(M≈12)
10.63 | TB65
(M=12)
9.04 | TB70
(M=12)
7.87 | TB80
(M=12)
6.25 | | VT2/DD 42.11
VT3/DD 36.47
MONTHLY DD 230 | 19.82 | 17.87
15.47
543 | 13.72
11.91
584 | 10.94
9.49 | 9.06
7.86 | 7.71
6.6 9 | 6.71
5.82 | 5.32
4.62 | | ANNUAL DD 679 PARAMETER A .533 |) 1688
3 .490 | 2396
.519 | 3256
.620 | 732
4271
-717 | 884
5423
.796 | 1039
6727
.864 | 1194
8209
.926 | 1504
11550
1.007 | | AZIMUTH AND TILT CO | DEF.
0082 | 0132 | .0103 | .0061 | .0034 | .0015 | ~.0000 | 0023 | | A27560
A3 .6896
A41858 | .6890
- 1454 | 6949
.6072
1057 | .4671
5642
.3497 | .4118
5046
.3161 | .3638
4773
.3011 | .3691
4661
.2949 | .3639
4669
.2958 | .3876
5131
.3248 | | A53124
B1 .0671 | 13546
1 .0671 | 1057
3393
.0671 | 0383
.0468 | ~.0415
.0468 | 0457
.0468 | 0502
-0468 | 0560
.0468 | 0730
.0468 | | 83 .2150
84 .9612 |) .2150
2 .9612 | 5390
.2150
.9612 | 9349
.6428
.6850 | 9349
.6429
.6850 | 9349
.6428
.6850 | 9349
.6428
.6850 | 9349
.6428
.6850 | 9349
.6428
.6850 | | 859696
TOTAL ANNUAL TRANSMIT
DUE SOUTH AND VERTI | 9696
TED RADIATION | 9696 | -1.0345 | -1.0345 | -1.0345 | -1.0345 | -1.0345 | -1.0345 | | AZIMUTH AND TILT CO
MONTH: JAN | DEF. C1 = FEB MAR | 212638
.0394
APR | C2 = 1648
MAY JUN | 'A2 = 17685
C3 = -
JUL | .3926
AUG | QTA3 = 15
C4 = 1.6310
SEP OCT | 51911
C5 =-1.
NOV | 0921
DEC | | TAVE: 24
QHOR: 403 | 26 34
537 911 | 48
1260 | 55 66
1654 1714 | 6 9
1760 | 67 | 64 51
1244 820 | 40
468 | 31
298 | | | | | | | | | | | | OKLAHOMA CITY, OKLAH | TB40 | , T845 | , TB50 | ELEVATION
T855 | TB60 | TB65 | TB70 | T = 35.4
TB80 | | SOUTH-VERT. (M= 1)
VT1/DD 272.48
VT2/DD 232.7 | 3 120.99
1 103.33 | (M= 1)
85.01
72.60 | (M= 1)
62.84
53.67 | (M= 1)
48.82
41.69 | (M= 1)
39.50
33.74 | (M= 1)
33.07
28.24 | (M≃ 1)
20.41
24.26 | (M=32)
23.71
18.56 | | VT3/DD 202.14
MONTHLY DD 315 | 4 89.76
5 258 | 63.07
367 | 46.62
497
1652 | 36.22
639 | 29.31
790 | 24.53
944 | 21.07
1099 | 16.13
1274 | | ANNUAL DD 201 PARAMETER A .55: AZIMUTH AND TILT CO | 3 .476
DEF. | 1111
.459 | .452 | 2322
.453 | 3145
.469 | 4120
.481 | 5246
. 483 | 8017
.504 | | A1 .059;
A2 .278;
A3247; | י קרום | .1071
.5570
5404 | . 1082
. 5945
5805 | .1058
.6330
6273 | .0983 | .0916
.7343 | .0867
.8466 | 0505
1.2710 | | A4 .1561
A5 .0731 | 3 .2935
7 .1054 | .3279
.1133 | .3531
.1165 | .3822
.1145 | 6817
.4146
.1019 | 7802
.4713
.0845 | 9396
.5621
.0633 | -1.5516
.9133
0512 | | 810331
82 -1.0753
83 .6401 | 3 -1.0753 - | 0338
-1.0754
.6408 | 0338
-1.0753
.6408 | 0338
-1.0753
.6408 | 0338
-1.0753 | 0338
-1.0753 | 0338
-1.0754 | .0090
-1.1201 | | 84 .8164
85 -1.3126 | .8164
5 -1.3126 | .8163
-1.3126 | .8164
-1.3126 | .8164
-1.3126 | .6408
.8164
-1.3127 | .6408
.8163
-1.3126 | .6408
.8164
-1.3126 | .7247
.7473
-1.2698 | | TOTAL ANNUAL TRANSMIT DUE SOUTH AND VERT AZIMUTH AND TILT CO | ITED RADIATION
ICAL QTA1 =
DEE C1 = _ | 308846
.0204 | 01
C2 =2465 | A2 = 25727
C3 = - | 1106 | QTA3 = 22
C4 = 1.7540 | 21049
C5 =-1. | | | MONTH: JAN
TAVE: 34 | FEB MAR
39 47 | APR
60 | MAY JUN
67 75 | JUL
BO | AUG
79 | SEP OCT
73 61 | NOV
49 | DEC
38 | | QHOR: 812 | 1015 1366 | 1780 | 1874 2121 | 2123 | 2005 | 1606 1264 | 911 | 702 | | TULSA, OKLAHOMA | | | | ELEVATION | | | | T = 36.2 | | TB30
SOUTH-VERT. (M= 1)
VT1/DD 378.6 | (M= 1) | T845
(M= 1)
79.39 | TB50
(M= 1)
58.01 | T855
(M= 1)
45.14 | TB60
(M= 1)
36.57 | TB65
(M= 1)
30.60 | TB70
(M= 1)
26.24 | TB80
(M=12)
19.83 | | VT2/DD 323.62
VT3/DD 281.12 | 2 101.89
2 88.51 | 67.85
58.94 | 49.58
43.07 | 38.57
33.51 | 31.26
27.15 | 26.15
22.72 | 22.43
19.48 | 16.96
14.73 | | MONTHLY DD 75
ANNUAL DD 179
PARAMETER A .360 | 658 | 358
1079
- 495 | 489
1618
.491 | 629
2270
-474 | 776
3050
.467 | 928
3964
.468 | 1082
5022
. 475 | 1264
1674
.527 | | AZIMUTH AND TILT CO
A)1900 | DEF.
B 1458 | 1407 | 1461 | -, 1548 | 1592 | 1602 | 1597 | 0320 | | A2 .4464
A34113
A4 .2143 | 4559 | .5020
4957
.2772 | .5764
5751
.3263 | .6726
6817
.3091 | .7620
7868
.4496 | .8407
8856
.5066 | .9238
-,9977
.5710 | 1.1005
-1.2653
.7798 | | A5 .143
B1 .0570 | 7 .1114
0 .0570 | .1111
.0570 | . 1175
.0570 | . 1246
.0570 | .1270
.0570 | . 1238
.0570 | . 1136
.0570 | 0001
.0165 | | B2 -1.098
B3 .690
B4 .768 | .6905 | -1.0988
-6906
-7686 | -1.0988
.6905
.7686 | -1.0988
.6905
.7686 | -1.0988
.6905
.7686 | -1.0988
.6905
.7686 | -1.0988
.6905
.7686 | -1.1118
.7187
.7261 | | B5 -1.278
TOTAL ANNUAL TRANSMI | 1 -1.2781
TTED RADIATION | -1.2781 | -1,2781 | -1.2781 | -1.2781 | -1.2781 | -1.2781 | -1.2424 | | DUE SOUTH AND VERT:
AZIMUTH AND TILT CO
MONTH: JAN | ICAL QTAT =
DEF. C1 = -
FEB MAR | 200791
.0106
APR | 01
C2 =2486
MAY JUN | FA2 ± 24063
C3 ± -
JUL | :4
3782
AUG | QTA3 = 26
C4 = 1.7026
SEP OCT | 06804
C5 =-1.
NOV | 2063
DEC | | TAVE: 35
QHOR: 730 | 40 48
936 1328 | 60
1576 | 69 77
1853 2032 | 82
2051 | 90
1906 | 72 64
1442 1151 | 49
850 | 39
642 | | | | | | | | | | | | ASTORIA, OREGON TB30 SOUTH-VERT. (M=12) VT1/DD NA VT2/DD NA VT3/DD NA WONTHLY DD 2 ANNUAL DD 5 PARAMETER A NA AZIMUTH AND TILT CO | (M= 12)
145.53
124.33
107.96
64
192
.712 | TB45
(M=12)
69.35
59.25
51.45
134
529 | TB50
(M=12)
38.49
32.08
28.55
242
1212
.847 | ELEVATION
TB55
(M=12)
23.77
20.31
17.63
391
2271
.907 | = 23
TB60
(M±12)
17.02
14.54
12.63
546
3671 | TB65
(M=12)
13.26
11.33
9.84
701
5330
1.023 | TB70
(M≈12)
10.86
9.28
8.06
856
7104
1.035 | AT = 46.2
TB80
(M=12)
7.97
6.81
5.91
1166
10722
1.018 | |---|--|--|--|--|--|---|---|--| | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B5 NA | 0151
.2201
1825
.1201
.0562
.0174
-1.0476
.7572
.5669
-1.0500 | 0155
.2879
2650
.1789
.0482
.0174
-1.0475
.7572
.5669
~1.0500 | 0187
.3930
3911
.2638
.0412
.0174
-1.0476
.7572
.5669
-1.0499 | 0200
.4355
4536
.3020
.0301
.0174
-1.0475
.7572
.5669
-1.0500 | -,0211
,4482
-,4867
,3210
,0143
,0174
-1,0476
,7572
,5669
~1,0500 | 0238
.4723
5336
.3502
0038
.0174
-1.0476
.7572
.5669
-1.0500 | 0281
.5156
5998
.3933
0206
.0174
-1.0476
.7572
.5669
-1.0500 | 0366
.6032
7216
.4743
0435
.0174
-1.0476
.7572
.5669
-1.0499 | | | CAL QTA1 = | 212013
.0909
APR
46
1160 | Q1
C2 =2904
MAY JUN
52 56
1572 1607 | TA2 = 17700
C3 = -
JUL
60
1774 | . 1898
AUG
60 | QTA3 = 1
C4 =
1.4838
SEP OCT
57 53
1186 663 | 52367
C5 =-1.
NOV
47
368 | .0830
DEC
42
258 | | MEDFORD, OREGON TB30 SOUTH-VERT. (M=12) VT1/OD 450.83 VT2/DD 384.32 VT3/DD 333.53 MONTHLY DD 64 PARAMETER A .674 | (M±12)
54.18
46.19
40.09
170
543
1.093 | TB45
(M=12)
30.52
26.01
22.58
302
1120
1.174 | TB50
(M=12)
20.34
17.34
15.05
453
1933
1.223 | ELEVATION
TB55
(M=12)
15.16
12.92
11.21
607
2954
1.251 | = 1299
TB60
(M=12)
12.08
10.30
8.94
762
4159
1.278 | TB65
(M=12)
10.04
8.56
7.42
917
5516
1.303 | TB70
(M=12)
8.59
7.32
6.35
1072
6996
1.321 | AT = 42.4
TBB0
(M=12)
6.66
5.68
4.93
1382
10233
1.340 | | AZIMUTH AND TILT CO
A1 .1396
A2 .1736
A32149
A4 .1899
A50592
B11507
B29562
B3 .6857
B4 .6676
B5 -1.0325 | .0582
.0580
0760
.0744
0300
1507
9562
.6857
.6677
-1.0325 | .0504
.0650
-0889
.0849
0365
1507
9562
.6857
.6676
-1.0325 | .0472
.0816
1145
.1040
0454
1507
9562
.6856
.6676
-1.0325 | .0463
.1016
1447
.1258
0548
1507
9562
.6857
.6677
-1.0325 | .0456
.1214
1749
.1464
0637
1507
9562
.6857
.6676
-1.0325 | .0450
.1401
2038
.1654
0722
1507
9562
.6857
.6677
-1.0325 | .0449
.1595
2344
.1852
0814
1507
9562
.6857
.6676
-1.0325 | .0458
.2013
3005
.2276
1014
1507
9562
.6857
.6676
-1.0325 | | TOTAL ANNUAL TRANSMIT DUE SOUTH AND VERTI AZIMUTH AND TILT CO MONTH: JAN TAVE: 37 QHOR: 398 | CAL QTA1 = | 270789
0725
APR
49
1590 | 07
C2 =1407
MAY JUN
54 65
2036 2330 | TA2 = 22461
C3 = -
JUL
71
2528 | | QTA3 = 1
C4 = 1.8685
SEP OCT
64 53
1603 980 | 92526
C5 =-1.
NOV
43
517 | .2955
DEC
35
289 | | NORTH BEND, OREGON TB30 SOUTH-VERT. (M= 1) YT1/DD NA YT2/DD NA YT3/DD NA MONTHLY DD O ANNUAL DD D PARAMETER A NA AZIMUTH AND TILT CO | (M=12)
484.67
414.18
359.66
28
83
.544 | TB45
(M= 1)
182.34
155.84
135.34
94
293
.722 | T850
(M= 1)
88.83
75.92
65.93
193
791
.730 | ELEVATION
TB55
(M=12)
49.12
41.97
36.45
273
1720
.831 | = 16
T860
(M=12)
31.47
26.89
23.35
427
3120
.946 | TB65
(M= 12)
23.08
19.73
17.13
582
4808
.962 | TB70
(M=12)
18.23
15.58
13.53
737
6613 | AT = 43.4
TB80
(M=12)
12.83
10.96
9.52
1047
10263
.889 | | A1 NA
A2 NA
A3 NA
A4 NA
A5 NA
B1 NA
B2 NA
B3 NA
B4 NA | 0025
.1107
1643
.1396
0634
.0087
-1.0643
.7506
.6054
-1.0906 | 0337
.2915
2989
.1935
.0311
.0141
-1.0742
.7425
.6380
-1.1350 | 0556
-4462
4745
-3172
-0253
-0141
-1-0742
-7425
-6380
-1-1350 | 0516
.4712
5634
.4112
0608
0087
-1.0643
.7606
.6054
-1.0906 | 0516
.4854
6078
.4363
0861
.0087
-1.0643
.7606
.6054
-1.0906 | 0588
.5696
7379
.5253
1232
.0087
-1.0643
.7606
.6054
-1.0906 | 0678
.6659
8759
.6225
1558
.0087
-1.0643
.7606
.6054
-1.0906 | 0824
.8118
-1.0752
.7650
1956
.0087
-1.0643
.7606
.6054
-1.0906 | | TOTAL ANNUAL TRANSMIT' DUE SOUTH AND VERTIC AZIMUTH AND TILT COL MONTH: JAN TAVE: 45 QHOR: 461 | CAL QTA1 ≖ | 268903
-1144
APR
48
1511 | C2 =3551
MAY JUN
53 56 | FA2 = 22423
C3 = -
JUL
58
2044 | . 2234
Aug
58 | QTA3 = 1
C4 = 1.6083
SEP OCT
58 53
1358 915 | 92763
C5 =-1.
NOV
51
505 | .2039
DEC
46
368 | | PORTLAND, DREGON TB30 SOUTH-VERT. (M=12) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD 7 ANNUAL DO 12 PARAMETER A NA AZIMUTH AND TILT COEF. | TB40
(M= 1)
86.76
73.66
63.87
90
251
.787 | TB45
(M= 1)
40.13
34.07
29.54
195
639
.941 | TB50
(M= 1)
23.50
19.95
17.30
333
1313
1.007 | ELEVATION
TB55
(M= 1)
16.14
13.70
11.88
485
2255
1.062 | 7860
(M= 1)
12.23
10.38
9.00
640
3465
1.123 | TB65
(M= 1)
9.85
8.36
7.25
795
4910
1.184 | TB70
(M= 1)
8.24
7.00
6.07
950
6511
1.224 | = 45.6
T880
(M= 1)
6.21
5.27
4.57
1260
9965
1.255 | |--|--|---|---|---|--|--|--|--| | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B3 NA B3 NA B4 NA B5 NA TOTAL ANNUAL TRANSMITTED | .0693
1538
.0815
0180
1165
0695
7663
.5429
.7249
79026
RADIATION | .0549
1075
.0404
.0119
1074
0695
7663
.5430
.7249
9026 | .0519
0835
.0094
.0402
1167
0695
7663
.5430
.7249
9026 | .0493
0569
0229
0659
1221
0695
7663
5430
.7249
9027 | .0451
0303
0529
.0866
1227
0695
7663
.5430
.7249
9026 | .0406
0041
0827
.1049
1223
0695
7663
.5429
.7249
9026 | .0373
.0218
-1153
.1256
-1257
0695
7663
.5429
.7249
9027 | .0333
.0711
1841
.1715
1403
0695
7663
.5430
.7249
9026 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEI TAVE: 39 4: QHOR: 294 534 | C1 ± -
3 MAR
2 45 | 224971
-,0835
APR
49
1311 | QT
C2 =2131
MAY JUN
56 63
1645 1863 | A2 = 18738
C3 = -
JUL
68
2085 | .3272
AUG
64 | QTA3 = 16
C4 = 1.6087
SEP OCT
62 53
1266 742 | C5 =-1.1 | 420
DEC
40
253 | | MONTHLY DD 117
ANNUAL DD 290
PARAMETER A .771 | TB40
(M≈12)
73.66
63.13
54.86
254
1115
.796 | TB45
(M=12)
48.98
41.98
36.48
382
1862
.838 | TB50
(M=12)
35.41
30.35
26.37
528
2859
.845 | ELEVATION
T855
(M=12)
27.48
23.55
20.46
681
4065
.846 | = 3084
T860
(M=12)
22.38
19.18
16.67
836
5430 | T865
(M=12)
18.88
16.18
14.06
991
6922
.834 | TB70
(M≈12)
16.33
13.99
12.16
1146
B507
.821 | = 44.3
T880
(M=12)
12.85
11.01
9.57
1456
11875 | | AZIMUTH AND TILT COEF. A10495 A2 .0400 A30800 A4 .0366 A50279 B1 .0713 B2 -1.1210 B3 .7698 B4 .6060 B5 -1.1703 | .0363
.4056
3835
.2866
.0418
.0212
-1.1878
.8419
.5251
-1.1736 | .0386
.4533
4510
.3278
.0303
.0212
-1.1878
.8419
.5251
-1.1736 | .0415
.5180
5372
.3807
.0189
.0212
-1.1878
.8419
.5251
-1.1736 | .0428
.5869
6323
.4376
.0043
.0212
-1.1878
.8419
.5251
-1.1736 | .0432
.6589
7337
.4980
0132
.0212
-1.1878
.8419
.5250
-1.1735 | .0431
.7388
-,8464
.5653
0331
.0212
-1.1878
.8419
.5251
-1.1736 | .0431
.8238
9654
.6369
0537
.0212
-1.1878
.8419
.5251
-1.1736 | .0433
1.0014
-1.2097
.7852
0934
.0212
-1.1878
.8419
.5251
-1.1736 | | TOTAL ANNUAL TRANSMITTED OUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 33 3! QHOR: 471 76 | QTA1 =
C1 =
B MAR
5 38 | 307375
.0556
APR
43
1654 | 07
C2 ±2552
MAY JUN
50 60
2047 2343 | 7A2 ≠ 25626
C3 = →
JUL
67
2387 | | QTA3 = 23
C4 = 1.6563
SEP OC1
57 48
1569 986 | 20163
C5 =-1.3
NOV
40
569 | 054
DEC
33
415 | | SALEM, OREGON SOUTH-VERT. (M= 1) VT1/DD 653.01 VT2/DD 556.39 VT3/DD 482.84 MONTHLY DD 16 ANNUAL DD 31 PARAMETER A 221 | TB40
(M= 1)
130.67
111.34
96.62
91
260
.880 | T845
(M±12)
61.21
52.12
45.22
133
650 | TB50
(M=12)
31.38
26.72
23.18
259
1391
1.049 | ELEVATION
TB55
(M=12)
19.80
16.86
14.63
411
2474
1.117 | 1 = 200
TB60
(M=12)
14.39
12.25
10.63
565
3790
1.162 | TB65
(M=12)
11.29
9.61
8.34
720
5277
1.195 | TB70
(M=12)
9.29
7.91
6.86
875
6886
1.214 | TB80
(M=12)
6.86
5.84
5.07
1185
10331
1.228 | | AZIMUTH AND TILT COEF. A11210 A2 .0925 A30056 A40999 A5 .1619 B1 .0038 B29309 B3 .6384 B4 .6950 B5 -1.0362 | 0310
.1244
1244
.0649
.0250
.0038
9309
.6384
.6950
-1.0362 | .0297
.1140
1672
.1524
0670
0439
8907
.6395
.6550
9668 | .0255
.1271
1825
.1605
0664
0439
8907
.6394
.6550
9668 | .0236
.1361
1973
.1704
0712
0439
8907
.6394
.6550
9669 | .0222
.1514
2209
.1863
0779
0439
8907
.6394
.6550
9668 | .0209
.1709
2507
.2055
0860
0439
8907
.6394
.6550
9668 | .0199
.1936
2851
.2276
0952
0439
8907
.6394
.6550
9668 | .0187
.2396
3551
.2727
1139
0439
8907
.6395
.6550
9668 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH
AND TILT COEF. MONTH: JAN FE TAVE: 40 4 QHOR: 336 59 | OTA1 :
C1 = -
B MAR
2 44 | z 233243
0567
APR
48
1386 | 01
C2 =1852
MAY JUN
54 60
1714 1838 | FA2 = 19406
C3 = -
JUL
65
2280 | | QTA3 = 16
C4 = 1.6635
SEP OCT
60 51
1314 748 | 66711
C5 =-1.7
NOV
45
395 | 1674
DEC
41
271 | | ALLENTOWN, P | | A
TB40 | TD 45 | TOSO | ELEVATION | | | LA | T = 40.7 | |---|----------------------------|--------------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|---------------------------| | SOUTH-VERT
VT 1/DD | 97.72 | (M= 1)
44.12 | TB45
(M= 1)
33.01 | TB50
(M≂12)
25.72
21.97 | TB55
(M=12)
20.50 | TB60
(M=12)
17.02 | TB65
(M=12)
14.53 | TB70
(M=12)
12.67 | TB80
(M=12)
10.09 | | VT2/DD
VT3/DD
MONTHLY DD | 83.49
72.51
201 | 37.69
32.73
445 | 28.20
24.49
594 | 21.97
19.06
598 | 17.52
15.21
750 | 14.54
12.62
903 | 12.41
10.78
1058 | 10.83
9.40
1213 | 8.62
7.49
1523 | | ANNUAL DD
Parameter a | 426
.518 | 1357
.507 | 2032
. 505 | 2807
.531 | 3705
. 59 1 | 4759
.651 | 5976
.705 | 7373
.754 | 10633 | | AZIMUTH AND
Al
A2 | .0293
.323 4 | .0358
.4532 | .0361
.5359 | 0387
.552 9 | 0351
.5 43 2 | 0328
.5374 | 0321
.5 4 25 | ~.0321
.5524 | 0349
.6296 | | A3
A4
A5 | 2916
.1287
.1081 | 4439
.2040
.1206 | 5395
.2591
.1238 | 5888
.4242
0143 | 5888
.4152
0158 | 5949
.4114
0203 | 6143
.4175
0270 | 6401
.4285
0355 | 7672
.4978
0630 | | B1
B2
B3 | .0244
-1.0765 | .0244
-1.0765 | .0244
-1.0765 | .0485
-1.0657 | .0485
-1.0657 | .0485
-1.0657 | .0485
-1.0657 | .0485
-1.0657 | .0485
-1.0657 | | B4
B5 | .7202
.7145
-1.1821 | .7202
.7145
-1.1821 | .7202
.7146
-1.1821 | .7312
.6597
-1.1273 | .7312
.6597
-1.1273 | .1312
.6597
-1.1273 | .7312
.6597
-1.1273 | .7312
.6597
-1.1273 | .7312
.6598
-1.1273 | | TOTAL ANNUAL DUE SOUTH AN AZIMUTH AND | ND VERTICAL | L QTA? | = 244077
.0013 | | A2 = 20346
C3 = - | 50 | QTA3 = 1
C4 = 1.5873 | | | | MONTH:
TAVE: | JAN FI
25 | EB MAR
28 38 | APR
50 | MAY JUN
60 69 | JUL
71 | AUG
71 | SEP 0CT
64 53 | NOV
44 | DEC
30 | | QHOR: | 537 7 | 39 1066 | 1366 | 1666 1838 | 1783 | 1542 | 1216 946 | 559 | 425 | | ERIE, PENNSYI | LVANIA
TB30 | TB40 | TB45 | TB50 | ELEVATION
TBS5 | | TREE | | 17 = 42.1 | | SOUTH-VERT
VT 1/DD | . (M= 1)
58.62 | (M= 1)
27.59 | (M≤ 1)
20.76 | (M=12)
16.15 | (M≈12)
12.86 | TB60
(M=12)
10.66 | TB65
(M=12)
9.08 | TB70
(M=12)
7.91 | TB80
(M=12)
6.29 | | VT2/DD
VT3/DD
MONTHLY DD | 49.97
43.37
206 | 23.51
20.41
438 | 17.70
15.36
582 | 13.78
11.97
590 | 10.98
9.53
741 | 9.10
7.90
894 | 7.75
6.73
10 4 9 | 6.76
5.86
1204 | 5.37
4.66
1514 | | ANNUAL OD
PARAMEIER A
AZIMUTH AND | 535
. 548 | 1530
.600 | 2254
.613 | 3111
.655 | 4099
.726 | 5234
.794 | 6532
. 860 | 8014
-923 | 11435
1.012 | | A1
A2 | 0281
.2177 | 0377
.3117 | 0386
.3561 | 0749
.5850 | 0650
.5422 | 0572
.5068 | 0 5 07
.4787 | 0454
.4580 | 0392
.4626 | | A3
A4
A5 | -,2142
.1742
.0119 | 3274
.2476
.0093 | 3782
.2781
.0116 | 6455
.3377
.0396 | 6032
.3186
.0322 | 5694
.3040
.0245 | 5452
.2946
.0154 | 5313
.2911
.0045 | 5625
.3170
0226 | | B1
B2 | .0111
9476 | .0111
9475 | .0111
9475 | .0282
-1.0231 | .0282
-1.0231 | .0282
-1.0231 | .0282
-1.0231 | .0282
-1.0231 | .0282
-1.0231 | | 83
84
85 | .6418
.7019
-1.0692 | .6418
.7020
-1.0693 | .6418
.7020
-1.0693 | .7308
.6654
-1.0652 | .7308
.6654
-1.0653 | .7308
.6654
-1.0653 | .7308
.6654
-1.0652 | .7308
.6654
-1.0653 | .7309
.6654
-1.0653 | | TOTAL ANNUAL T
DUE SOUTH AN
AZIMUTH AND | ND VERTICAL | L OTA1 | = 218491
0175 | OT
C2 = 1914 | A2 = 18161
C3 = - | 3759 | QTA3 = 1
C4 = 1.6709 | 55952
CS =-1. | 1191 | | MONTH:
TAVE: | JAN FI
26 | EB MAR
26 34 | APR
45 | MAY JUN
58 64 | JUL
69 | AUG
68 | SEP OCT
62 52 | NOV
42 | DEC
31 | | QHOR: | 375 5 | 86 890 | 1421 | 1744 1846 | 1792 | 1557 | 1250 852 | 409 | 286 | | HARRISBURG, F | PENNSYLVANI
TB30 | IA
TB40 | TB45 | TB50 | ELEVATION
TBSS | f = 348
TB60 | T B 65 | LA
1870 | T = 40.2
TB80 | | SOUTH-VERT. | (M= 1) | (M= 1) | (M= 1)
37.38 | (M= 1)
28.54 | (M= 1)
23.02 | (M= 1)
19.27 | (M= 1)
16.56
14.14 | (M= 1)
14.52 | (M= 1)
11.64 | | VT2/DD
VT3/DD
MONTHLY DD | 133.91
116.28
116 | 53.15
45.39
39.41
343 | 31.93
27.72
488 | 24.37
21.16
639 | 19.66
17.07
792 | 16.45
14.29
946 | 14.14
12.28
1101 | 12.40
10.77
1256 | 9.94
8.63
1566 | | ANNUAL DD
PARAMETER A | .518 | .643 | 1635
.652 | 2415
.633 | | 4274
.607 | 5410
.622 | 6734
.651 | 9877
.686 | | AZ [MUTH AND
A]
A2 | . 1093
. 3533 | .0841
.3095 | .0889
.3627 | .0975
.4439 | . 1046
. 5248 | . 1079
.5870 | . 1057
.6216 | . 1008
. 6488 | .0947
.7564 | | A3
A4
A5 | 3349
.1733
.0727 | 3078
-1568
-0573 | 3703
.1946
.0579 | 4661
.2505
.0587 | 5622
.3064
.0589 | 6387
.3519
.0564 | -,6882
.3830
.0482 | 7350
.4130
.0341 | 9011
.5133
0011 | | 8 1
82 | 0438
-1.0637 | B3
B4
B5 | .7061
.7294
1,1731 | .7061
.7294
-1.1731 | .7061
.7294
-1.1731 | .7061
.7294
-1.1731 | .7061
.7294
-1.1731 | .7061
.7294
-1.1730 | ,7060
.7294
-1.1731 | .7061
.7294
-1.1731 | .7061
.7293
-1.1730 | | TOTAL ANNUAL 1
Due south an | TRANSMETTEI
VD VERLICAI | RADIATION C | = 242941 | | | | QTA3 = 1
C4 = 1.6091 | | | | TAVE: | JAN F1 | EB MAR
31 40 | | MAY JUN
62 71 | JUL
75 | AUG
72 | SEP OCT
65 55 | NOV
43 | 1397
DEC
35 | | QHOR: | 512 7 | 56 1060 | 1439 | 1660 1816 | 1798 | 1517 | 1246 943 | 582 | 454 | | PHILADELPHIA,
SOUTH-VERT.
VT1/DD
VT2/DD
VT3/OD
WONTHLY DO
ANNUAL DD
PARAMETER A
AZIMUTH AND | TB30
(M= 1)
189.86
162.13
140.79
103
209
.565 | T84
(M± 163.5
54.7
47.
30
80
.65 | 1)
54
26
11
08
65 | TB45
(M= 1)
44.27
37.81
32.83
441
1449
.648 | (M=
33.
28.
24.
5 | 50
1)
40
52 | ELEVATION
T855
(M= 1)
26.61
22.73
19.73
734
3013
.622 | = 30
TB60
(M= 1)
22.06
18.83
16.36
806
3982
.617 | (M±
18
16
13
11
5 | 865
1)
.78
.04
.92
041
112
626 | TB70
(M= 1)
16.34
13.96
12.12
1196
6412
.643 | T = 39.9
TB80
(M= 1)
12.98
11.08
9.62
1506
9534
.674 | |---|--|---|--|--|---|---|---|---|------------------------------------|--|---|--| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
TOTAL ANNUAL 1 | 0506
.2373
2480
.1445
.0278
.0036
-1.0542
.7018
.7248
-1.1683 | 02:
. 18:
21:
. 00:
. 00:
-1.05:
. 70:
. 72:
-1.16:
ED RADIA | 52
67
84
38
36
42
18
49
84
TION | 0177
.2522
2959
.1776
.0023
.0036
-1.0542
.7018
.7249
-1.1684 | 01
.32
36
00
.00
-1.05
.70
.72 | 94
179
141
104
136
142 -
118 | 0093
.4115
4873
.2950
0046
.0036
-1.0542
.7018
.7248
-1.1684 | 0060
.4881
5806
.3529
0094
.0036
-1.0542
.7018
.7249
-1.1684 | 6:
0:
-0:
-1.0:
-7: | 508
591
015
015
036
542
018
248 | 0014
.6017
7269
.4429
0233
.0036
-1.0542
.7018
.7249
-1.1684 | .0002
.7291
9075
.5504
0514
.0036
-1.0542
.7018
.7249
-1.1684 | | DUE SOUTH AND
AZIMUTH AND
MONTH:
TAVE:
QHOR: | TILT COE
JAN
31 | F.
FEB 1
33 | OTA1 =
C1 =
MAR
42
109 | 254166
-0070
APR
50
1419 | C2 = -
MAY
62
1743 | 01/
3179
JUN
71
1813 | A2 = 212049
C3 =
JUL
76
1701 | 2415
AUG
74
1580 | QT.
C4 = 1
SEP
68
1306 | A3 = 18
.5751
OCT
56
935 | 2360
C5 =-1.
NOV
45
635 | . 1533
DEC
35
482 | | PITTSBURGH, (SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | T830
. (M= 1)
66.60
56.83
49.34
230
552
.598 | TB
(M=
33.
28.
24.
4 |
1)
42
52
76 | TB45
(M= 1)
25.69
21.92
19.03
596
2118
.542 | (M=
19.
16.
14.
20 | | ELEVATION
TB55
(M=12)
15.30
13.04
11.31
685
3812
.669 | = 1224
TB60
(M=12)
12.54
10.68
9.27
836
4881
.735 | (M=
10
9
7 | 865
12)
-58
-02
-83
991
120
802 | TB70
(M=12)
9.15
7.80
6.77
1146
7539
.867 | AT = 40.5
TB80
(M=12)
7.20
6.14
5.33
1456
10841
.960 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | 0817
.4448
4083
.2370
.1087
.0466
-1.0106
.6724
.7219
-1.1324 | 09
.55
52
.29
.13
.04
-1.01
.67
.72 | 187
115
130
170
166
106
124
119 | 1016
.6321
5940
.3351
.1512
.0466
-1.0106
.6724
.7219
-1.1324 | .3'
4'
.3'
0'
9'
.6' | 706
862
069
373
395
092 | .0376
.3566
4283
.3485
0789
0069
9373
.6395
.7092
-1.0455 | .0332
.3430
4149
.3318
0742
0069
9373
.6395
.7092
-1.0455 | .3
4
0
0
9 | 292
3333
1076
195
1718
1069
1373
1395
1092 | .0259
.3305
4109
.3145
0728
0069
9373
.6395
.7092 | .0222
.3610
4679
.3404
0865
0069
9373
.6394
.7092 | | TOTAL ANNUAL DUE SOUTH A AZIMUTH AND MONTH; TAVE: QHOR: | ND VERTIC | CAL
EF.
FEB
30 | QTA1 = | 219177
.0175
APR
48
1370 | C2 = -
MAY
61
1624 | 01/
- 2096
JUN
67
1753 | A2 = 18236
C3 = +
JUL
71
1768 | | Q1
C4 = 1
SEP
65
1230 | A3 = 15
.6309
OCT
52
869 | 56679
C5 ≂∽l
NOV
41
525 | .0926
DEC
33
336 | | WILKES-BARRE SOUTH-VERY VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | T830
(M≈ 1)
69.91
59.59
51.71
211
494
.692 | TB
(M=
32.
27.
23. | .30
.53 | T845
(M= 1)
24.41
20.81
18.06
604
2180
.618 | (M=
19
16
14 | 850
1)
.44
.57
.38
759
032
636 | ELEVATION
T855
(Mm 1)
16.14
13.76
11.94
914
4019
.660 | = 948
TB60
(M= 1)
13.80
11.76
10.21
1069
5134
.689 | (Ms
12
10
8 | (B65
- 1)
2.05
3.92
3.92
1224
5407 | TB70
(M= 1)
10.70
9,12
7.91
1379
7853
.756 | AT = 41.3
TB80
(M± 1)
8.73
7.44
6.46
1689
11158
.792 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
TOTAL ANNUAL | .0374
.0204
0593
.0829
0627
0253
9511
.6335
.7276 | .05
19
06
07
99
63 | 726
589
253
511
334
277
864 | .0512
.1834
2455
.2021
0617
0253
9511
.6335
.7276
-1.0864 | 2
2
0
0
9 | 511
335
277 | .0454
.2640
3368
.2492
0527
0253
9511
.6335
.7277
-1.0864 | .0418
.2945
3745
.2694
0527
0253
9511
.6334
.7277 | (
(
(| 0380
3232
4137
2911
0567
0253
9511
5335
7277
0864 | .0347
.3568
4617
.3189
0643
0253
9511
.6334
.7277
-1.0864 | .0305
.4548
6026
.4042
0888
0253
9511
.6334
.7277 | | DUE SOUTH A
AZIMUTH AND
MONTH:
TAVE:
QHOR: | IND VERTI | CAL
EF.
FEB | QTA1 | = 226513
0177
APR
49
1381 | C2 =
MAY
59
1632 | 0T
2483
JUN
67
1799 | A2 = 18870
C3 = -
JUL
73
1706 | | | FA3 = 1
1.5912
OCT
52
906 | 62200
C5 =-1
NOV
41
490 | . 1103
DEC
29
384 | | PROVIDENCE, RHODE ISLAND TB30 TB40 SOUTH-VERT. (M=12) (M=12) VT1/00 138.70 53.05 VT2/00 118.72 45.41 VT3/00 103.13 39.45 MONTHLY DD 114 297 ANNUAL DD 401 1218 PARAMETER A 241 .440 AZIMUTH AND TILT COEF. | TB45
(M=12)
37.29
31.92
27.72
422
1899
.509 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | |---|--|---| | A109070433 A2 .8106 .6519 A372126585 A4 .6292 .4669 A5 .0483 .0311 B1 .0157 .0157 B2 -1.1516 -1.1516 B3 .8100 .8100 B4 .6159 .6159 B5 -1.1608 -1.1608 TOTAL ANNUAL TRANSMITTED RADIATION | 0369
.6773
7035
.4726
.0330
.0157
-1.1516
.8100
.6159 | 0339 0317 0303 0286 0267 0234 .6921 .6992 .7161 .7290 .7444 .8224 7327 7529 7833 8116 8457 9742 .4790 .4847 .4995 .5133 .5300 .5998 .0310 .0253 .0184 .0087 0035 0333 .0157 .0157 .0157 .0157 .0157 .0157 .0157 -1.1516 -1.1516 -1.1516 -1.1516 -1.1516 -1.1516 -1.1516 .8100 .8100 .8100 .8100 .8100 .8100 .6159 .6159 .6159 .6158 .6159 .6159 -1.1608 -1.1608 -1.1607 -1.1608 -1.1608 -1.1608 | | DUE SOUTH AND VERTICAL QTAI: | = 250294
.0155
APR
45
1352 | QTA2 = 208990 QTA3 = 179770 C2 =3250 C3 =2398 C4 = 1.5463 C5 =-1.1685 MAY JUN JUL AUG SEP OCT NOV DEC 57 66 74 70 63 52 43 32 1766 1792 1740 1510 1205 925 558 396 | | CHARLESTON, SOUTH CAROLINA TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD NA 467.31 VT2/DD NA 398.41 VT3/DD NA 345.96 MONTHLY DO 9 49 ANNUAL DD 34 148 PARAMETER A NA .578 AZIMUTH AND TILT COEF. | TB45
(M= 1)
245.97
209.70
182.09
93
324
.573 | 104.78 66.62 45.47 33.13 25.65 17.50
162 255 374 513 663 971 | | A1 NA .0155 A2 NA .1367 A3 NA .1719 A4 NA .1417 A5 NA .0240 B1 NA .0240 B2 NA -1.0501 B3 NA .6427 B4 NA .9291 B5 NA -1.2509 | .0207
.2049
2496
.1913
0466
-0240
-1.0501
.6427
.9291
-1.2509 | .0244 .0280 .0301 .0313 .0317 .0323 .2684 .3346 .3844 .4339 .5043 .7471 .3250 .4075 .4725 .5390 .6366 .9802 .2387 .2882 .3236 .3574 .4062 .5750 .0505 .0560 .0595 .0623 .0683 .0903 .0240 .0240 .0240 .0240 .0240 .0240 .0240 .0240 .1.0501 .1.0501 .1.0501 .1.0501 .1.0501 .1.0501 .1.0501 .1.0501 .1.0501 .1.0501 .1.0501 .6427 .6426 .6427 .6427 .6427 .6427 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 .9291 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA1: AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 48 48 56 QHOR: 714 1037 1368 | = 272020
.0623
APR
64
1754 | QTA2 = 226798 QTA3 = 195077 C2 =2953 | | COLUMBIA, SOUTH CAROLINA TB30 TB40 SOUTH-VERT, (M= 1) (M= 1) VT1/DD 1015.30 216.39 VT2/DD 864.66 184.28 VT3/DD 750.59 159.97 MONTHLY DD 22 103 ANNUAL DD 42 289 PARMETER A .836 .820 AZIMUTH AND TILT COEF. | TB45
(M= 1)
121.37
103.37
89.73
183
554
.795 | ELEVATION = 226 LAT = 33.9 TB50 TB55 TB60 TB65 TB70 TB80 (M= 1) | | A1 .0224 .0358 A20614 .0539 A3 .03201169 A40004 .1143 A504310641 B100560056 B296509650 B3 .5756 B4 .8888 .8888 B5 -1.2327 -1.2327 TOTAL ANNUAL TRANSMITTED RADIATION | .0400
.0814
1502
.1399
0668
0056
9650
.5756
.8888
-1.2327 | .0460 .0481 .0475 .0444 .0401 .0313 .0998 .1248 .1613 .2127 .2770 .4484 .1755 .2095 .2592 .3287 .4163 .6552 .1630 .1893 .2219 .2626 .3107 .4377 .0726 .0785 .0848 .0913 .0987 .1205 .0056 .0056 .0056 .0056 .0056 .0056 .0056 .0560 .9650
.9650 | | | = 280242
.0089
APR
64
1722 | QTA2 = 233439 QTA3 = 200669 C2 =2418 C3 =3966 C4 = 1.7513 C5 =-1.1852 MAY JUN JUL AUG SEP OCT NOV DEC 71 77 80 79 72 64 52 46 1860 1966 1875 1730 1442 1187 904 710 | | GREENVILLE, SOUTH CAROLI TB30 SOUTH-VERT. (M= 1) VT1/DD 655.06 VT2/DD 558.87 VT3/DD 485.34 MONTHLY DD 42 ANNUAL DD 86 PARAMETER A .232 | TB40
(M= 2)
188.26 | TB45
(M= 2)
120.45
102.04
88.46
200
683
.413 | TB50
(M= 2)
83.55
70.78
61.36
288
1110
.404 | ELEVATION
TB55
(M= 2)
60.48
51.23
44.42
397
1720
.429 | = 971
TB60
(M=12)
44.43
37.96
32.97
528
2518
.496 | TB65
(M=12)
34.55
29.52
25.64
679
3496
.547 | TB70
(M=12)
28.17
24.07
20.90
833
4659
.572 | = 34.9
TB80
(M=12)
20.53
17.54
15.23
1143
7637
.608 | |--|---|---|---|---|---|---|---|---| | AZIMUTH AND TILT COEF. A10863 A2 .7008 A36302 A4 .5470 A5 .1005 B1 .0148 B2 -1.0343 B3 .6287 B4 .8354 B5 -1.2692 | .5029
4716
0833
0104
8265
.3516
1,1391 | .0382
5488
.4450
4383
0798
0104
8265
.3516
1.1391 | .0411
5104
.3950
4089
0801
0104
8265
.3516
1.1391 | .0401
4176
.2956
3313
0787
0104
8265
.3516
1.1391
-1.3008 | .0364
.6739
7102
.5492
0080
0099
-1.0800
.6857
.7639
-1.2470 | .0315
.7169
7965
.5882
0302
0099
-1.0800
.6857
.7638
-1.2469 | .0284
.8080
9359
.6636
0516
0099
-1.0800
.6857
.7638
-1.2469 | .0230
1.0196
-1.2547
.8355
0970
0099
-1.0800
.6856
.7639
-1.2470 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEI TAVE: 40 4 | OTA1 =
C1 ±
3 MAR
1 50 | APR
60 | OT
C2 =2008
MAY JUN
65 74 | A2 = 23882
C3 = -
JUL
75
1776 | .33 99
AUG
76 | QTA3 = 20
C4 = 1.7146
SEP OCT
71 S9
1474 1191 | 05319
05 =~1.3
NOV
51
914 | 2027
DEC
43
625 | | QHOR: 766 96 | 1 1346 | 1694 | 1866 2015 | 1776 | 1775 | 1414 1191 | 714 | 973 | | HURON, SOUTH DAKOTA TB30 SOUTH-VERT. (M=12) VT1/DD 31.11 VT2/DD 26.64 VT3/DD 23.14 MONTHLY DD 479 ANNUAL DD 1831 PARAMETER A 616 | TB40
(M=12)
19.62
16.80
14.59
760
3149
.740 | TB45
(M=12)
16.34
13.99
12.15
913
4011
.803 | T850
(M=12)
13.98
11.97
10.40
1067
4985
.856 | ELEVATION
TB55
(M=12)
12.20
10.45
9.08
1222
6072
.904 | = 1289
TB60
(M=12)
10.83
9.27
8.06
1377
7273 | TB65
(M=12)
9.74
8.34
7.24
1532
8588
.978 | TB70
(M= 12)
8.84
7.57
6.58
1687
10028
1.908 | T = 44.4
TB80
(M=12)
7.47
6.39
5.56
1997
13240
1.051 | | AZIMUTH AND TILT COEF. A1 | .7941
.5341
-1.1492 | .0034
.2121
2398
.2387
0566
~.0174
-1.1331
.7941
.5341
-1.1491 | .0052
.2211
2522
.2385
0538
0174
-1.1331
.7941
.5341
-1.1491 | .0069
.2352
2726
.2437
0535
0174
-1.1331
.7941
.5341
-1.1492 | .0085
.2543
2998
.2542
0548
0174
-1,1331
.7941
.5341
-1,1492 | .0099
.2755
3298
.2674
0572
0174
-1.1331
.7941
.5341 | .0112
.2985
3628
.2830
0608
0174
-1.1331
.7941
.5341
-1.1491 | .0134
.3537
4435
.3253
0737
0174
-1.1331
.7941
.5341
-1.1492 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 11 1 QHOR: 475 78 | QTA1 =
C1 =
B MAR
6 26 | 293341
.0149
APR
45
1454 | 07
C2 =3003
MAY JUN
57 66
1843 2127 | TA2 = 24494
C3 = -
JUL
74
2230 | | QTA3 = 2
C4 = 1.5676
SEP OCT
60 47
1395 951 | 10614
C5 ==1.
NOV
32
569 | 2750
DEC
15
348 | | PIERRE, SOUTH DAKOTA TB30 SOUTH-VERT. (M= 1) VT1/DD 53.46 VT2/DD 45.83 VT3/DD 39.83 MONTHLY DD 457 ANNUAL DD 1257 PARAMETER A .505 | T840
(Mi: 1)
32.59
27.94
24.28
750
2496
.579 | T845
(M= 1)
27.03
23.17
20.14
905
3299
.593 | TB50
(M= 1)
23.08
19.78
17.19
1059
4212
_607 | ELEVATION
T855
(M= 1)
20.14
17.26
15.00
1214
5243 | N = 1726
TB60
(M= 1)
17.86
15.31
13.31
1369
6395 | TB65
(M= T)
16.04
13.75
11.95
1524
7667 | TB70
(M= 1)
14.57
12.49
10.85
1679
9072
.682 | AT = 44.4
1880
(M=12)
12.15
10.43
9.07
1823
12220
.714 | | AZIMUTH AND TILT CREF. A10028 A2 .2699 A32423 A4 .1283 A5 .0380 B1 .0204 B2 -1.2036 B3 .8209 B4 .5718 B5 -1.2271 | .9012
.3501
3377
.1850
.0377
.0204
-1.2036
.8209
.5718
-1.2271 | .0027
.4007
3950
.2187
.0388
.0204
-1.2036
.8209
.5718
-1.2272 | .0038
.4513
4543
.2532
.0384
.0204
-1.2036
.8209
.5718
-1.2272 | .0045
.4992
5146
.2879
.0354
.0204
-1.2036
.8209
.5718
-1.2272 | .0049
.5471
-5773
.3241
.0302
.0204
-1.2036
.8209
.5718 | | .0052
.6481
7150
.4040
.0140
.0204
-1.2036
.8209
.5718
-1.2272 | 0051
.8575
9310
.6014
.0129
.0241
-1.2363
.8730
.4994
-1.2124 | | TAVE: 15 | _ OTA1 = | 324109
.0247
APR
46
1496 | C2 =3563
MAY JUN
58 69
1999 2215 | JUL
76 | 68
2705
AUG
74
2002 | QTA3 = 7
C4 = 1.5373
SEP OCT
62 51
1498 1049 | 233082
C5 =-1
NOV
34
654 | .3048
DEC
21
445 | | RAPID CITY, SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | TB30
. (M= 1)
88.36
75.76
65.85
293
970
.562 | TB40
(M= 1)
47.96
41.12
35.74
539
2159
.527 | TB45
(M= 1)
37.96
32.55
28.29
681
2958
.527 | TB50
(M=12)
31.00
26.61
23.14
780
3903
.545 | ELEVATION
TB55
(M=12)
25.90
22.23
19.33
934
4980
.573 | TB60
(M=12)
22.22
19.08
16.59
1068
6185
.597 | TB65
(M=12)
19.46
16.71
14.52
1243
7529
.616 | TB70
(M=12)
17.30
14.85
12.91
1397
9009
.630 | AT = 44.1
TB80
(M=12)
14.16
12.16
10.57
1707
12281
.634 | |---|--|--|---|--|--|--|--|--|---| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
Total Annual | .0511
.2798
3127
.1508
0034
.0208
-1.2175
.8350
.5773
-1.2345 | | .0627
.5684
6097
.3338
.0192
.0208
-1.2175
.8350
.5772
-1.2345 | 1041
.8010
6877
.5369
.1379
.0706
-1.2551
.8822
.4914 | 0970
.8394
7547
.5689
.1214
.0706
-1.2551
.8821
.4914
-1.2347 | 0916
.8876
8336
.6094
.1036
.0706
-1.2551
.8822
.4914
-1.2347 | 0872
.9415
9200
.6552
.0846
.0706
-1.2551
.8822
.4914
-1.2347 | 0840
1.0049
-1.0173
.7086
.0652
.0706
-1.2551
.8822
.4914
-1.2347 |
0814
1.1799
-1.2669
.8532
.0238
.0706
-1.2551
.8822
.4914
-1.2347 | | DUE SOUTH AND
AZIMUTH AND
MONTH:
TAVE:
QHOR: | ND VERTICAL TILT COEF. JAN FEB 23 26 556 762 | Č1 =
MAR
32 | = 327896
.0624
APR
43
1596 | 01
C2 =3894
MAY JUN
55 65
1904 2168 | FA2 = 27428
C3 = -
JUL
72
2198 | .2368
AUG
73 | QTA3 ± 2
C4 = 1.5294
SEP OCT
58 49
1489 1038 | 35992
C5 ±-1.
NOV
33
657 | .3157
DEC
24
462 | | SIOUX FALLS, SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | T830
(M= 1)
48.31
41.39
35.97
488
1327
.675 | TB40
(M= 1)
29.84
25.56
22.22
790
2661 | TB45
(M= 1)
24.95
21.37
18.57
945
3500
.691 | TB50
(M= 1)
21.43
18.36
15.96
1100
4439
.699 | ELEVATION
TB55
(M= 1)
18.78
16.09
13.99
1255
5487
.713 | = 1427
TB60
(M= 1)
16.72
14.32
12.45
1410
6644
.725 | TB65
(M= 1)
15.06
12.91
11.22
1565
7924
.734 | TB70
(M= 1)
13.71
11.74
10.21
1720
9349
.745 | AT = 43.6
TB80
(M= 1)
11.61
9.95
8.65
2030
12570
.752 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
TOTAL ANNUAL 1 | .1136
.1611
-1624
.1166
0062
0510
-1.1748
.7879
.5939
-1.2317 | . 1328
. 2548
2633
. 1766
. 0023
0510
- 1. 1748
. 7879
. 5939
- 1. 2317 | .1395
.2972
3099
.2043
.0051
0510
-1.1747
.7879
.5939
-1.2317 | .1418
.3372
3577
.2317
.0048
0510
-1.1748
.7879
.5939
-1.2317 | .1411
.3800
4121
.2622
.0021
0510
-1.1748
.7879
.5939
-1.2317 | .1402
.4314
4785
.2999
0025
0510
-1.1748
.7879
.5939
-1.2317 | .1389
.4881
5520
.3421
0084
0510
-1.1747
.7879
.5939
-1.2317 | .1367
.5466
6296
.3863
0152
0510
-1.1747
.7879
.5939 | . 1335
.6842
8120
. 4941
0363
0510
-1. 1748
. 7879
. 5939
-1. 2317 | | DUE SOUTH AND AZIMUTH AND MONTH: TAVE: QHOR: | ID VERTICAL | QTA1 | = 311037
.0081
APR
46
1610 | C2 =3926
MAY JUN
57 69
1807 2044 | A2 = 26025
C3 = -
JUL
73
2065 | .2079
AUG
72 | QTA3 = 2:
C4 = 1.4967
SEP OCT
59 51
1363 1060 | 23974
C5 ≈-1.
NOV
33
635 | 2791
DEC
21
463 | | CHATTANOOGA, SOUTH-VERT. VT1/DD VT3/DD VT3/DD MONTHLY DD ANNUAL DD PARMETER A AZIMUTH AND | TB30
(M= 2)
425.11
359.45
311.47
49
101
.583 | TB40
(M= 2)
138.19
116.85
101.25
150
510 | TB45
(M=12)
86.09
73.46
63.78
226
925
.433 | T850
(M= 12)
55.95
47.73
41.45
348
1483
.508 | ELEVATION
T855
(M=12)
40.52
34.57
30.02
481
2354
.545 | = 689
TB60
(M=12)
31.20
26.62
23.12
624
2949
.573 | TB65
(M=12)
25.09
21.41
18.59
776
3895
.602 | T870
(M=12)
20.92
17.85
15.50
931
5035
.637 | T = 35.0
TB80
(M=12)
15.69
13.39
11.63
1241
7960
.685 | | A1
A2
A3
A4
A5
B1
B2
B3
B4 | .0210
4151
.4392
2527
0595
0143
7284
.2697
1.1427
-1.2259 | .0318
5593
.5984
3250
0827
0143
7284
.2697
1.1427 | 0088
.7099
8031
.4994
.0249
0019
-1.0324
.6855
.7906
-1.1902 | 0128
.6064
7000
.4377
.0073
0019
-1.0324
.6855
.7905
-1.1902 | 0162
.5941
6970
.4366
0031
0019
-1.0324
.6855
.7906
-1.1903 | 0189
.6112
7275
.4541
0110
0019
-1.0324
.6855
.7906
-1.1902 | 0213
.6345
7672
.4755
0198
0019
-1.0324
.6855
.7906
-1.1902 | 0231
.6630
8175
.5014
0313
0019
-1.0324
.6855
.7906
-1.1902 | 0258
.7988
-1.0254
.6129
0623
0019
-1.0324
.6855
.7906
-1.1902 | | DUE SOUTH AN
AZIMUTH AND
MONTH:
TAVE: | D VERTICAL | QTA1 : | 253586
0287
APR
59
1607 | QT
C2 =2337
MAY JUN
65 74
1685 1818 | A2 = 21130:
C3 = -
JUL
17
1700 | .3469
AUG
76 | QTA3 = 18
C4 = 1.6763
SEP OCT
71 61
1324 1101 | 31696
C5 =-1.
NOV
48
807 | 1248
DEC
39
573 | | KNOXVILLE, TENNESSEE TB30 SOUTH-VERT. (M= 1) VT1/DD 230.40 VT2/DD 196.45 VT3/DD 170.56 MONTHLY DD 94 ANNUAL DD 162 PARMETER A 741 AZIMUTH AND TILT COEF. | TB40 TB45 (M= 1) (M= 1) 95.06 67.23 81.05 57.33 70.37 49.77 227 321 584 974 .676 .614 | TB50 TB55 (M= 1) (M= 1) 49.61 38.19 42.30 32.56 36.72 28.27 435 556 1515 2196 | (M= 1) (M= 1)
30.36 25.02
5 25.89 21.33
7 22.48 18.52
6 711 863
3028 4004 | TB70 TB80 (M= 1) (M= 1) 21.23 16.27 18.10 13.87 15.71 12.04 1017 1327 5162 8108 .560 .610 | |--|--|--|--|---| | A1 .0072
A2 .0937
A30961
A4 .0533
A5 .0203
B10130
B2 -1.0030
B3 .6281
B4 .8229
B5 -1.2165
TOTAL ANNUAL TRANSMITTEE | .0056 .0018
.1931 .2646
20042813
.1110 .1574
.0415 .0493
01300130
-1.0030 -1.0030
.6282 .6282
.8229 .8229
-1.2165 -1.2165 | .3479 .4285
37764716
.2142 .2725
.0542 .0565
01300130
-1.0030 -1.0030
.6281 .6281
.8229 .8229 | .4969 .5686
655826550
3275 .3883
.0509 .0391
001300130
0 -1.0030 -1.0030
1.6281 .6282
8229 .8229 | 01160109
.6282 .7723
74529719
.4437 .5786
.02020309
01300130
-1.0030 -1.0030
.6282 .6281
.8229 .8229
-1.2165 -1.2166 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF, MONTH: JAN FE TAVE: 37 QHOR: 637 87 | OTA1 = 260343
C1 =0161
B MAR APR
B 48 59 | | =3686 | T NOV DEC
B 46 41 | | MEMPHIS, TENNESSEE TB30 SOUTH-VERT. (M= 2) VT1/DD 1025.10 VT2/DD 867.80 VT3/DD 752.18 MONTHLY DD 23 ANNUAL DD 65 PARAMETER A 489 AZIMUTH AND TILT COEF. | TB40 TB45
(M= 1) (M= 1)
186.55 104.92
158.92 89.38
137.96 77.59
121 216
372 700
.558 .538 | TB50 TB55
(M= 1) (M= 1)
68.69 49.2
58.51 41.92
50.79 36.33
330 466 | (M= 1) (M= 1)
1 37.74 30.25
2 32.15 25.77
2 27.91 22.37
3 600 749
2 2493 3358 | LAT = 35.1
TB70 TB80
(M= 1) (M= 1)
25.09 18.68
21.38 15.91
18.56 13.61
903 1213
4371 7010
.567 .618 | | A1 .0328
A24932
A3 .5161
A44067
A50044
B10103
B27977
B3 .3192
B4 1.1503
B5 -1.288 | .0111 .0105
.2247 .2685
-28813443
.1834 .2075
01060072
00560056
97489748
.5954 .5954
.8706 .8705
-1.2272 -1.2272 | .3059 .3266
3883411
.2335 .2516
0047004
00560056
97489746
.5954 .5954
.8705 .8705 | 3540 .3888
344574942
5 .2763 .3086
900870175
500560056
397489748
4 .5954 .5954
5 .8705 .8705 | .0157 .0157
.4386 .5699
56647630
.3536 .4685
03090673
00560056
97489748
.5954 .5954
.8705 .8705 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 40 4 QHOR: 694. 94 | - QTAT = 272252
. C1 =0064
EB MAR APR
II S1 64 | | =4513 | T NOV DEC
2 49 44 | | NASHVILLE, TENNESSEE TB30 SOUTH-VERT. (M= 1) VT1/DD 534.88 VT2/DD 456.28 VT3/DD 396.15 MONTHLY DD 35 ANNUAL DD 99 PARAMETER A 319 AZIMUTH AND TILT COEF. | TB40 TB45 (M= 1) (M=12) 126.19 78.17 107.65 66.90 93.46 58.02 149 240 500 674 .411 .483 | TB50 TB55
(M=12) (M=12:
53.56 39.3:
45.77 33.60
39.75 29.1:
350 47'
1374 2010 | (M= 1) (M= 1)
3 30.46 24.36
25.99 20.78
9 22.56 18.04
7 616 770
8 2803 3742 | LAT = 36.1
TB70 TB80
(M= 1) (M= 1)
20.28 !5.19
17.30 !2.96
15.02 !1.25
925 !235
4880 7756
.627 .675 | | A1 .1999 A2 .3765 A34175 A4 .2449 A5 .0090 B10083 B2 -1.0362 B3 .6761 B4 .8184 B5 -1.2136 TOTAL ANNUAL TRANSMITTE | .13140205
.3486 -6162
-4039 -6108
.2457 .4061
0079 .0674
0083 .0284
-1,0362 -1.0991
.6761 .7437
.8183 .7475
-1,2136 -1,2188 | .6165 .6491
63046801
.4206 .4541
.0506 .039
.0284 .028
-1.0991 -1.099
.7437 .7431
.7475 .7431 | 0 .4751 .5134
5 .5738 .6269
6 .3705 .4055
1 .0332 .0410
4 .0083 .0083
1 .1.0362 .1.0362
7 .6761 .6762
5 .8184 .8183 | .0399 .0303
.5644 .6826
69928775
.4513 .5571
05220948
00830083
-1.0362 -1.0362
.6761 .6762
.8184 .8184
-1.2136 -1.2136 | | OUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FI TAVE: 40 | L QTA1 = 253081 | | =3701 | T NOV DEC
50 50 40 | | ABILENE, TEXAS TB30 T840 SOUTH-VERT. (M=12) (M=12) VT1/DD 799.56 238.83 VT2/DD 683.14 204.05 VT3/DD 593.53 177.29 MONTHLY DD 42 141 ANNUAL DD 67 326 PARAMETER A .572 .682 AZIMUTH AND TILT COEF. | TB45
(M=12)
149.15
127.43
110.72
226
610
.648 | TB50
(M=12) (M
102.28 7
87.39 6
75.93 5
330
1024 | EVATION = 1752
T855 T860
=12) (M=12)
4.61 57.39
3.75 49.03
5.39 42.60
452 588
1562 2224
.543 .527 | T865
(#=12)
46.06
39.35
34.19
732
3032
.522 | LAT = 32.4
TB70 TB80
(M=12) (M=12)
38.23 28.35
32.66 24.22
28.38 21.04
882 1189
3989 6479
.512 .483 |
--|--|--|--|--|---| | A1 .0091 .0023 A2 .0601 .2646 A303332641 A4 .0520 .2065 A5 .0143 .0146 B103940394 B2 -1.0918 -1.0918 B3 .6483 .6482 B4 .8163 .8163 B5 -1.3270 -1.3271 | .0016
.3658
3685
.2807
.0220
-1.0918
.6483
.8163
-1.3271 | .4809
4839
.3655
.0321
0394
-1.0918 -1.
.6483 | 0021 .0024
5896 .6736
59836952
4462 .5097
03940394
0918 -1.0918
6483 .6483
8162 .8163
3271 -1.3270 | .0031
.7609
8089
.5788
.0269
0394
-1.0918
.6483
.8162
-1.3270 | .0049 .0124
.8927 1.2718
9881 -1.5115
.6842 .9811
.00680470
03940394
-1.0918 -1.0918
.6483 .6483
.8162 .8163
-1.3270 -1.3271 | | | = 315053
0204
APR
65
1916 | C2 =1847
MAY JUN
71 78 | = 262355
C3 =5094
JUL AUG
82 83
2092 1954 | OTA3 = 22
C4 = 1.8380
SEP OCT
77 63
1552 1347 | 25453
C5 ==1.2504
NOV DEC
55 41
1013 858 | | AMARILLO, TEXAS TB30 SOUTH-VERT. (M= 2) VT1/DD VT2/DD VT2/DD VT3/DD VT3 | TB45
(M= 2)
113.92
96.62
83.78
287
1333
.429 | TB50
(M= 2) (M
82.11 6
69.64 5
60.38 4
399 | EVATION = 3602
TB55 TB60
H= 2) (M= 2)
12.80 50.12
33.26 42.51
16.19 36.86
521 653
2756 3671
.455 .461 | TB65 (M= 2) 41.38 35.10 30.43 791 4732 .469 | LAT = 35.2
TB70 TB80
(M= 2) (M= 2)
35.17 27.04
29.83 22.93
25.86 19.86
931 1211
5973 8937
.478 .456 | | AZIMUTH AND TILT COEF. A1 | 0071
4318
.1715
2638
2142
0071
8724
.3553
1.1066
-1.3814 | 3258054519022088007187243553 | 0005 .0023
21710896
07052260
11240181
20762126
00710071
87248724
3553 .3553
1066 1.1066
3814 -1.3814 | .0047
.0514
3973
.0874
2182
0071
8724
.3553
1.1066
-1.3814 | .0068 .0110
.2059 .6149
5865 -1.1400
.2051 .5325
22622858
00710071
87248724
.3553 .3553
1.1066 1,1066
-1.3814 -1.3814 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI AZIMUTH AND TILT COEF. CI = MONTH: JAN FEB MAR TAVE: 35 36 46 QHOR: 999 1180 1740 | = 369046
.0036
APR
55
2041 | QTA2
C2 =2686
MAY JUN
65 73
2242 2342 | = 307509
C3 =4656
JUL AUG
77 75
2360 2166 | QTA3 = 26
C4 = 1.8042
SEP OCT
68 58
1768 1462 | 64119
C5 ==1.3706
NOV DEC
44 35
1037 873 | | AUSTIN, TEXAS TB3D TB40 SOUTH-VERT. (M= 3) (M= 1) VT1/DD NA 1212.90 VT2/DD NA 1032.84 VT3/DD NA 896.83 MONTHLY DD 1 24 ANNUAL DD 2 73 PARAMETER A NA .498 AZIMUTH AND TILT COEF. | TB45
(M= 1)
447.52
381.08
330.90
65
215
.439 | TB50
(M= 1) (M
210.35 12
179.12 10
155.53 9 | EVATION = 620
TB55 TB60
H= 1) (M= 1)
22.10 B2.28
33.97 70.06
10.28 60.04
237 352
870 1378
.413 .415 | TB65
(M= 1)
60.35
51.39
44.62
480
2026
.423 | LAT = 30.3
TB70 TB80
(M= 1) (M= 1)
46.82 31.48
39.87 26.81
34.62 23.28
619 920
2847 5158
.429 .440 | | A1 NA1274 A2 NA .5330 A3 NA6655 A4 NA .4008 A5 NA0165 B1 NA .0039 B2 NA9787 B3 NA .5434 B4 NA .9546 B5 NA -1.2944 TOTAL ANNUAL TRANSMITTED RADIATION | 1473
.5615
6959
.4273
0140
.0039
9787
.5433
.9546
-1,2945 | .5716
7018
.4381
0098
.0039
.9787
.5434 | .15281486
.5758 .6178
.70207484
.4410 .4692
.00670034
.0039 .0039
.97879787
.5434 .5434
.9546 .9546
.2945 -1.2944 | 1427
.6780
8225
.5112
0046
.0039
9787
.5434
.9546
-1.2945 | 13881351
.7879 1.1156
9702 -1.4199
.5904 .8230
01370375
.0039 .0039
97879787
.5434 .5434
.9546 .9546
-1.2945 -1.2944 | | DUE SOUTH AND VERTICAL QTA1 AZIMUTH AND TILT COEF. C! = MONTH: JAN FEB MAR TAVE: 50 53 57 QHOR: 889 1105 1487 | = 285473
0485
APR
69
1550 | C2 =1326
MAY JUN
74 BO | = 237697
C3 =5253
JUL AUG
83 83
2131 1921 | QTA3 = 20
C4 = 1.8623
SEP OCT
78 68
1602 1333 | 04387
C5 ==1.1605
NOV DEC
57 51
1019 877 | | BROWNSVILLE, SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | TB30
. (M= 1)
NA
NA
NA
O
O
NA | 5
6
NA | T845
(M= 1)
1443.54
1224.15
1062.27
17
35
.319 | T850
(M= 1)
565,66
479.69
416.25
43
108
.489 | ELEVATION
T855
(M= 1)
284.07
240.89
209.04
86
247
.458 | TB60
(M= 1)
162.90
138.14
119.88
149
466
,425 | TB65
(M= 1)
103.44
87.72
76.12
235
798
.440 | TB70
(M= 1)
68.86
58.40
50.67
353
1295
.495 | T = 25.9
TB80
(M= 1)
37.60
31.88
27.67
646
3133
.606 | |--|--|---|--|--|--|--|--|---|--| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
Total Annual | NA
NA
NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA
NA | 0515
.1842
2350
.0522
.0579
.0431
8560
.4392
1.1288
-1.2413 | 0261
.1804
2361
.0745
.0328
.0431
8560
.4392
1.1288
-1.2413 | 0162
.2829
3769
.1426
.0255
.0431
8560
.4392
1.1288
-1.2413 | 0109
.3931
5291
.2169
.0165
.0431
8560
.4392
1.1288
-1.2413 | 0032
.4798
6488
.2816
.0045
.0431
8560
.4392
1.1289
-1.2413 | .0017
.4897
6653
.2982
0058
.0431
8560
.4392
1.1288
-1.2413 | .0008
.6354
8932
.4378
0570
.0431
8560
.4392
1.1288
-1.2413 | | DUE SOUTH AND
AZIMUTH AND
MONTH:
TAVE:
QHOR: | ND VERTICAL | OTA1 =
C1 =
MAR
I 67 | 259302
.0406
APR
74
1900 | OT
C2 = .1124
MAY JUN
78 80
1911 2078 | A2 = 21509
C3 = -
JUL
82
2199 | .7719
AUG
82 | QTA3 = 1
C4 = 2.0791
SEP OCT
80 75
1706 1387 | 84702
C5 =-1.
NOV
67
1032 | 0249
DEC
60
869 | | CORPUS CHRIS SOUTH-VERT VT1/DD VT2/DD VT3/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | TB30
. (M= 2)
NA
NA
NA
O
O | (M=12)
2083 58 | TB45
(M=12)
778.93
662.96
575.63
32
81
.402 | TB50
(M±12)
353.09
300.52
260.93
70
185
.524 | ELEVATION
TB55
(M=12)
189.78
161.53
140.25
129
364
.574 | = 43
TB60
(M=12)
115.01
97.89
84.99
214
648
.591 | T865
(M= 12)
78.47
66.79
57.99
313
1065
.553 | T870
(M=12)
57.19
48.68
42.27
430
1647
.523 | T = 27.8
T880
(M=12)
34.35
29.24
25.39
715
3581
.581 |
 A1
A2
A3
A4
A5
81
B2
83
B4
B5
TOTAL ANNUAL | NA
NA
NA
NA
NA
NA
NA
NA | . 1270
. 3269
~. 4354
. 1840
0043
~. 0485
9877
. 5720
1.0079
-1.2598 | .0954
.3389
4521
.1923
0045
0485
9877
.5720
1.0079
-1.2598 | .0653
.3176
4238
.1819
0041
0485
9877
.5720
1.0079
-1.2599 | .0547
.3613
4800
.2059
0016
0485
9877
.5720
1.0079
-1.2598 | .0484
.4362
5758
.2470
.0021
0485
9877
.5720
1.0079
-1.2598 | .0483
.5576
7310
.3136
.0077
0485
9877
.5720
1.0079
-1.2598 | .0466
.6850
8961
.3903
.0082
0485
9877
.5720
1.0079
-1.2599 | .0267
.6777
-1.1737
.5451
0233
0485
9877
.5720
1.0079
-1.2598 | | OUE SOUTH AND
AZIMUTH AND
MONTH:
TAVE:
QHOR: | ND VERTICAL | QTA1 =
C1 = -
MAR
65 | 273265
.0530
APR
72
1673 | OT
C2 = .0103
MAY JUN
78 81
1879 2090 | A2 = 22708:
C3 = -
JUL
B3
2221 | .6912
AUG
83 | QTA3 = 19
C4 = 1.9937
SEP GCT
81 73
1746 1408 | 95124
C5 ≂-}.
NOV
67
1109 | 0936
DEC
57
B17 | | DEL RIO, TEX/ SOUTH-VERT. VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | T830
(M= 1)
NA
NA
NA
3
5 | TB40
(M= 2)
979.82
826.15
715.37
29
66
.451 | T845
(M= 2)
464.75
391.86
339.32
62
168
.485 | T850
(M= 2)
250.21
210.97
182.68
115
364
.430 | ELEVATION
TB55
(M= 2)
147.89
124.69
107.98
194
672
.450 | = 1027
TB60
(M= 2)
96.96
81.75
70.79
296
1095 | T865
(M= 2)
69.16
58.31
50.49
414
1656 | TB70
(M= 2)
52.41
44.19
38.27
547
2402
.525 | T = 29.4
TB80
(M= 2)
34.72
29.27
25.35
826
4591
.549 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
85 | NA
NA
NA
NA
NA
NA
NA | . 1406
6875
.7192
4366
0992
1168
7169
.1393
1.3410
-1,3656 | .1229
7144
.7531
4629
0929
1168
7169
.1394
1.3409
-1.3656 | . 1375
8485
.9009
5535
1045
1168
7169
.1393
1.3410
-1.3657 | . 1272
7892
. 8358
5138
0999
! 168
7169
. 1393
1.3409
-1.3656 | .1169
6824
.7147
4406
0947
1168
7169
.1393
1.3410
-1.3657 | .1094
5517
-5619
3511
0908
1168
7169
-1393
1.3410
-1.3657 | . 1026
3987
. 3822
2475
0850
1168
7169
. 1393
1.3410
-1.3656 | .0909
0627
0262
0235
0719
1168
7169
.1393
1.3410 | | TAVE: | ID VERTICAL | QTA1 =
C1 = -
Mar
63 | 298537
. 1047
APR
70
1710 | C2 =1751
MAY JUN
78 81
1784 1978 | A2 = 248774
C3 =
JUL
85
2166 | . 4747
AUG
82 | QTA3 = 2
C4 = 1.8419
SEP OCT
78 69
1578 1302 | 14003
C5 =~1.
NOV
61
1095 | | | EL PASO, TEXAS TB30 SOUTH-VERT. (M= 1) VT1/DD 2410.57 431.50 VT2/DD 2055.82 368.00 VT3/DD 1785.69 319.65 | TB45
(M= 1)
247.38
210.98
183.25 | TB50
(M= 1)
158.B5
135.47
117.67 | ELEVATION
TB55
(M= 1)
109.62
93.49
81.20 | TB60
(M= 1)
80.66
68.79
59.75 | TB65
(M= 1)
62.30
53.13
46.15 | TB70
(M= 1)
50.41
42.99
37.34 | T = 31.8
TB80
(M= 1)
36.30
30.96
26.89 | |---|--|---|---|--|--|--|--| | MONTHLY DD 17 93 ANNUAL DD 28 222 PARAMETER A .594 .551 AZIMUTH AND TILT COEF. A1 .0088 .0171 A2 .0293 .0566 A305571009 | .0254
.1229
.1838 | 252
825
.560
.0389
.2075
2905 | 366
1334
.558
.0489
.2809
-3839 | 497
2001
.545
.0589
.3786
5120 | 643
2826
.532
.0679
.4941
6672 | 795
3808
.520
.0770
.6379
8642 | .0943
1.0423
-1.4391 | | A4 .038} .0700
A501560246
B101380138
B2 -1.0479 -1.0479
B3 .5780 .5779
B4 .9303 .9303
B5 -1.3684 -1.3683 | .1242
0318
0138
-1.0479
.5779
.9303
-1.3683 | .1944
0410
0138
-1.0479
.5779
.9304
-1.3684 | .2538
0495
0138
-1.0479
.5780
.9303
-1.3683 | ,3321
0632
0138
-1.0479
.5780
.9303
-1.3684 | .4239
0817
0138
-1.0479
.5780
.9303
-1.3683 | .5376
1066
0138
-1.0479
.5780
.9303
-1.3683 | .8588
1889
0138
-1.0479
.5779
.9303
-1.3683 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA1 AZIMUTH AND TILT COEF. C1 & MONTH: JAN FEB AR TAVE: 44 48 56 QHOR: 1102 1535 1908 | = 377967
.0512
APR
65
2329 | 01
C2 =1234
MAY JUN
74 81
2632 2690 | TA2 = 31426
C3 = -
JUL
82
2480 | .6574
AUG | QTA3 = 2
C4 = 2.0038
SEP OCT
73 64
1937 1698 | C5 =-1.
NOV
52 | 3655
DEC
44
1040 | | FORT WORTH, TEXAS - TB30 TB40 SOUTH-VERT, (M= 1) (M= 1) VT1/OD 1407.21 281.07 VT2/DD 1199.90 239.66 VT3/DD 1042.01 208.13 MONTHLY OD 19 94 ANHUAL DD 34 229 PARAMETER A .540 .603 | TB45
(M= 1)
163.72
139.60
121.23
162
449
.594 | TB50
(M= 1)
103.83
88.53
76.88
255
793 | ELEVATION
T855
(M= 1)
72.00
61.39
53.32
368
1257
.597 | = 538
T860
(M= 1)
53.11
45.28
39.32
499
1870
.610 | TB65
(M= 1)
41.26
35.18
30.55
642
2643
.615 | TB70
(M= 1)
33.53
28.59
24.83
790
3598
.612 | T = 32.0
TB80
(M= 1)
24.17
20.61
17.89
1097
6093
.593 | | AZIMUTH AND TILT COEF. A1 .0050 .0155 A2 .0423 .2034 A3 -12302829 A4 .0802 .2066 A506570583 B103410341 B2 -1.0367 -1.0367 B3 .6173 .6173 B4 .9032 .9032 B5 -1.2868 -1.2868 | .0181
.2355
-3137
.2329
0561
0341
-1.0367
.6173
.9032
-1.2868 | .0185
.2670
3462
.2568
0549
0341
-1.0367
.6173
.9032
-1.2867 | .0179
.3056
3915
.2857
0564
0341
-1.0367
.6173
.9032
-1.2867 | .0164
.3443
4417
0504
0341
-1.0367
.6173
.9032
-1.2868 | .0151
.4120
5342
.3639
0698
0341
-1.0367
.6173
.9032 | .0141
.5228
6841
.4454
0830
0341
-1.0367
.6173
.9032 | .0142
.8065
-1.0635
.6502
1087
0341
-1.0367
.6173
.9032
-1.2868 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAT AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 44 49 53 QHOR: 778 1057 1464 | * 295886
~.0247
APR
63
1527 | 01
C2 =1754
MAY JUN
70 80
1867 2178 | TA2 = 24631:
C3 = -
JUE
86
2216 | | QTA3 = 2
C4 = 1.8566
SEP OCT
74 67
1690 1272 | 11661
C5 ==1.
NOV
56
954 | 2424
DEC
46
761 | | HOUSTON, TEXAS TB30 SOUTH-VERT. (M=12) (M=12) VT1/DD | TB45
(M=12)
355.13
302.19
262.32
61
146 | TB50
(M=12)
191.73
163.15
141.62
113
314
.405 | ELEVATION
TB55
(M=12)
112.79
95.98
83.32
192
589
.475 | = 108
TB60
(M=12)
75.11
63.92
55.48
288
1001
.520 | T865
(M=12)
53.65
45.65
39.63
403
1580
.557 | T870
(₱=12)
40.66
34.60
30.03
532
2349
.565 | T = 30.0
TB80
(M= 1)
26.00
22.07
19.15
813
4612
.624 | | A1 NA .0435
A2 NA .1916
A3 NA2126
A4 NA .1318
A5 NA .0021
B1 NA0592
B2 NA .9441
B3 NA .5564
B4 NA .9378
B5 NA -1.1896 | .1029
.4208
4453
.2692
.0278
0592
9441
.5564
.9378
-1.1896 | .1232
.5275
5624
.3389
.0322
0592
9441
.5564
.9378 | .1023
.4820
5263
.3177
.0189
0592
9441
.5564
.9378
-1,1896 | .0906
.5115
5783
.3505
.0039
0592
9441
.5564
.9378 | .0815
.5611
6520
.3960
0092
0592
9441
.5564
.9378
-1.1896 | .0772
.6452
7691
.4649
0233
0592
9441
.5564
.9378
-1,1896 | 0284
.5254
7532
.4628
1210
0171
8500
.4676
1.0151
-1.1663 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI | = 254511
0096
APR
68
1564 | | A2 = 21187
C3 = -
JUL
82
1852 | 9 | QTA3 = 1
C4 = 1.8108
SEP OCT
78 70
1500 1254 | | · | | KINGSVILLE, TEXAS TB30 SOUTH-VERT. (M= 1) VT1/OD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD O ANNUAL DD O PARAMETER A NA AZIMUTH AND TILT COEF. | (M_ 1) | TB45
(M= 1)
130.33
958.87
832.08
23
53
.621 | 414.43 | ELEVATION
TB55
(M= 1)
208.13
176.56
153.21
123
351
.643 | = 56
TB60
(M= 1)
121.54
103.10
89.47
210
649
.610 | TB65
(M= 1)
80.40
68.20
59.19
318
1066
.579 | TB70 (M= 1) 57.28 48.59 42.16 446 1649 .562 | T = 27.5
TB80
(M= 1)
34.55
29.31
25.43
740
3571
.594 | |--|--
--|--|--|---|---|--|---| | A1 NA A2 NA A3 NA A4 NA A5 NA B1 NA B2 NA B2 NA B3 NA B4 NA B5 NA | NA - | .1195
.0287
0361
.0639
0240
0882
8444
.3849
1.0917
-1.2509 | 0292
0882
8444
.3849
1.0917 | .1176
.1763
2264
.1807
0399
0882
8444
.3849
1.0917
-1.2509 | .1298
.2122
2711
.2144
0456
0882
8444
.3849
1.0917
-1.2509 | .1401
.2497
3179
.2461
0496
0882
8444
.3849
1.0917
-1.2509 | .1449
.2992
3835
.2847
0551
0882
8444
.3849
1.0917
-1.2509 | .1282
.4949
6558
.4215
0699
0882
6444
.3849
1.0917
-1.2509 | | TOTAL ANNUAL TRANSMITTED DUE SOLITH AND VERTICAL AZIMUTH AND TIT COEF. MONTH: JAN FEB TAVE: 56 59 QHOR: 923 1153 | DTA1 - | 267215
.0164
APR
73
1600 | 0T
C2 = .0036
MAY JUN
78 82
1872 2034 | A2 = 222179
C3 = ~
JUL
84
2139 | .6516
AUG
84 | QTA3 = 19
C4 = 1.9385
SEP OCT
81 72
1701 1335 | C5 ±-1.0
NOV | 0583
DEC
59
858 | | LAREDO, TEXAS TB30 SOUTH-VERT. (M± 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD C ANNUAL DD O PARAMETER A NA AZIMUTH AND TILT COEF. | TB40
(M=12)
NA
NA
NA
NA
9 | TB45
(M=12)
1586.46
1350.45
1172.71
17
45 | T850
(M=12)
599.46
510.28
443.12
46
144
.392 | ELEVATION
T855
(M=12)
202.17
240.20
208.58
97
339
.372 | 30.00 | TB65
(M= 1)
96.39
81.82
71.01
295
1082
-410 | TB70
(M= 1)
66.96
56.84
49.34
425
1676
.433 | T = 27.5
TB80
{M±12}
39.41
33.54
29.13
693
3503
.475 | | A) NA | MA
NA
NA
NA
NA
NA
NA | .1313
.2824
3052
.2730
0037
1119
9725
.5310
.9889
-1.3045 | .1611
.4178
4576
.3675
.0054
1119
9725
.5310
.9889 | . 1996
.5579
6199
.4561
.0153
1119
9725
.5310
.9889
-1.3045 | 1961
.1753
1968
.1345
.0056
0109
8945
.4038
1.1179
-1.3264 | 1727
.2653
3158
.1879
.0053
0109
8945
.4038
1.1179
-1.3264 | 1590
.3627
4435
.2489
.0045
0109
8945
.11179
-1.3264 | .1630
.9658
-1.2058
.7060
0190
1119
9725
.5310
.9889
-1.3045 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FET TAVE: 56 60 QHOR: 977 1210 | RADIATION QTA1 = C1 = ~ | 273824
.0371 | 01
C2 =0042
MAY JUN
80 85
2005 2081 | A2 = 22763
C3 = -
JUL
86
2143 | 86 | QTA3 = 19
C4 = 1.9929
SEP OCT
82 75
1645 1309 | 95639
C5 =-1.
NOV
63
1026 | 1057
DEC
57
856 | | LUBBOCK, TEXAS TB30 SOUTH-VERT. (M= 2) VT1/DD 678.16 V12/DD 574.43 VT3/DD 498.00 MONTHLY DD 52 ANNUAL DD 141 PARAMETER A 563 | TB40
(M= 1)
199.53
170.46
148.11
200
608
.481 | T845
(M= 1)
125.28
107.03
92.99
319
1026
.518 | TB50
(M= 1)
88.27
75.41
65.52
452
1568
.540 | ELEVATION
TB55
(M= 1)
67.15
57.36
49.84
595
2242
.544 | 1 = 3241
TB60
(M= 1)
53.54
45.74
39.74
746
3055
.541 | T865
(M= 1)
44.38
37.91
32.94
900
4000
.531 | TB70
(M= 1)
37.86
32.34
28.10
1055
5125
.521 | TB80
(M= 1)
29.26
25.00
21.72
1365
7923 | | AZIMUTH AND TILT COEF. A1 .0149 A25072 A3 .4392 A43020 A51043 B10009 B28527 B3 .2807 B4 1.1958 B5 -1.4079 | 0871
.4654
5176
.3286
.0286
.0321
-1.1115
.6343
.8691
-1.3693 | 0810
.4679
5265
.3327
.0225
.0321
-1.1115
.6343
.8692
-1.3693 | 0793
.4789
5456
.3449
.0155
.0321
-1.1115
.6343
.8691
-1.3693 | 0797
.5267
6155
.3842
.0056
.0321
-1.1115
.6343
.8691
-1.3693 | 0801
.6093
7261
.4497
0103
.0321
-1.1115
.6343
.8692
-1.3693 | 0807
.7231
8827
.5383
0298
.0321
-1.1115
.6343
.8691
-1.3692 | ~.0813
.8670
-1.0822
.6502
0546
.0321
-1.1115
.6343
.8691
-1.3693 | 0866
1.3057
-1.7006
.9966
1376
.0321
-1.1115
.6343
.8691
-1.3692 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 35 4 QHOR: 1018 132 | QTA1 =
Cl =
B MAR
1 48 | 370525
.0027
APR
59
2255 | C2 =2118
MAY JUN
69 76
2376 2605 | JUL
79 | 17
5594
AUG
77
2274 | QTA3 = 2
C4 = 1.9166
SEP OCT
72 60
1806 1520 | 64818
C5 =-1.
NOV
48
1159 | .3614
DEC
41
926 | | LUFKIN, TEXAS TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/OD NA 373.52 VT2/OD NA 317.70 VT3/OD NA 275.77 MONTHLY DD 7 69 ANNUAL DD 15 166 PARAMETER A NA .527 AZIMUTH AND TILT COEF. | TB45
(M= 1)
201.46
171.35
148.73
127
329
.594 | TB50
(M= 1)
128.30
109.13
94.72
200
580
.601 | ELEVATION
TB55
(M= 1)
87.44
74.37
64.56
293
952
.583 | TOEA | TB65
(M= 1)
49.42
42.04
36.49
518
2095 | TR70 | T = 31.2
TB80
(M= 1)
26.76
22.76
19.76
957
5390
.572 | |---|---|---|---|--|--|---|---| | A1 NA0347 A2 NA0087 A3 NA0315 A4 NA .0443 A5 NA0499 B1 NA0657 B2 NA9196 B3 NA .5022 B4 NA .9560 B5 NA -1.2425 | 0233
.0337
0802
.0721
0485
0657
9196
.5022
.9560
-1,2425 | 0130
.1215
1890
.1377
0540
0657
9196
.5022
.9560
-1.2425 | 0040
.2147
3034
.2082
0592
0657
9196
.5022
.9560
-1.2425 | .0036
.2999
4086
.2759
0658
0657
9196
.5022
.9561 | .3798
5101
.3391
0737
0657
9196
.5022
.9560 | .0148
.4714
6347
.4100
0861
0657
9196
.5022
.9560
-1.2425 | .0229
.7212
9889
.5983
1204
0657
9196
.5022
.9560 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 49 52 58 QHOR: 832 1082 1399 | = 274869
0447
APR | 01
C2 =1143
MAY JUN
74 79
1822 2056 | A2 = 22868
C3 = -
JUL
81
1986 | . 5323
Aug | QTA3 = 1
C4 = 1.8533
SEP OCT
77 67
1558 1355 | C5 =-1. | 1556
DEC
51
746 | | MIDLAND-ODESSA, TEXAS TB30 SOUTH-VERT. (M= 2) (M= 1) VT1/DO NA VT2/DD NA 356.20 VT3/DD NA 309.45 MONTHLY DD 7 ANNUAL DD 22 PARMETER A NA 531 | TB45
(M= 1)
213.95
182.57
158.61
184
542
.566 | TB50
(M= 1)
131.87
112.53
97.76
299
953
.578 | ELEVATION
T855
(M= 1)
91.21
77.84
67.62
432
1491
.569 | = 2858
T860
(M= 1)
68.45
58.41
50.74
576
2148 | T865
(M± 1)
54.19
46.24
40.18
727
2953
.555 | TB70
(M= 1)
44.72
38.16
33.15
881
3935
.559 | T = 31.9
TB80
(M= 1)
33.09
28.23
24.53
1191
6547
.542 | | AZIMUTH AND TILT COEF. A1 NA0984 A2 NA .2317 A3 NA2848 A4 NA .1595 A5 NA0005 B1 NA .0442 B2 NA -1.0791 B3 NA .5924 B4 NA .9285 B5 NA -1.3731 | 0932
.2590
3200
.1826
0056
.0442
-1.0791
.5924
.9285
-1.3730 | ~.0967 | 1031
.3797
4708
.2728
0154
.0442
-1.0791
.5925
.9284
-1.3730 | 1091
.4644
5788
.3350
0228
.0442
-1.0791
.5925
.9285 | 1140
.5539
6958
.4016
0323
.0442
-1,0791
.5924
.9285 | 1172
.6584
8400
.4825
0498
.0442
-1.0791
.5925
.9285 | 1274 1.0330 -1.3837 .78331313 .0442 -1.0791 .5924 .9265 -1.3731 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA: AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 41 46 54 QHOR: 1068 1390 1925 | = 364494
0252
APR | 01
C2 =1757
MAY JUN
73 79
2433 2612 | FA2 = 30337
C3 = -
JUL
80
2400 | .5947
AUG | QTA3 = 2
C4 = 1.9519
SEP OCT
73 66
1817 1556 | 60588
C5 ==1.
NOV
52
1205 | | | PORT ARTHUR, TEXAS TB30 TB40 (M=12) VT1/DB NA 1329.84 VT2/DD NA 133.28 VT3/DD NA 984.08 MONTHLY DD 0 18 ANNUAL DD 1 44 PARAMETER A AZIMUTH AND TILT COEF. | T845
(M=12)
532.18
453.52
393.81
45
129
.455 | T850
(M=12)
270.32
230.36
200.04
89
300
.351 | ELEVATION
TB55
(M= 1)
147.41
125.22
108.67
151
595
.367 | = 23
TB60
(M= 1)
86.87
73.80
64.04
257
1025
.471 | TB65
(M± 1)
57.87
49.16
42.66
385
1628
.537 | TB70
(M= 1)
41.79
35.50
30.81
533
2439
.579 | T = 30,0
TB80
(M=
1)
26,51
22,52
19,54
841
4815
,632 | | A1 NA .0020
A2 NA .4933
A3 NA .5287
A4 NA .2918
A5 NA .0485
B1 NA0308
B2 NA -1.0215
B3 NA .6120
B4 NA .9328
B5 NA -1.2458 | 0088
.6336
6726
.3652
.0725
0308
-1.0215
.6120
.9328
-1.2458 | 0016
.8957
9619
.5273
.0914
0308
-1.0215
.9328
-1.2458 | . 1654
.2441
3811
.2846
1284
0713
8957
.4815
1.0285
-1.2172 | . 1324
. 2312
- 3516
. 2488
- 1023
0713
8957
. 4816
1.0284
- 1.2171 | .1199
.2778
4053
.2648
0908
0713
8957
.4816
1.0285 | .1141
.3509
4991
.3066
0885
0713
8957
.4816
1.0285
-1.2172 | .1074
.5752
8062
.4587
1021
0713
8957
.4816
1.0284
-1.2172 | | | = 260515
.0044
APR
68
1608 | 07
C2 =1074
MAY JUN
74 79
1850 2018 | FA2 = 21678
C3 = -
JUL
B1
1835 | | QTA3 = 1
C4 = 1.8486
SEP OCT
77 68
1518 1297 | 86397
C5 =-1.
NOV
58
971 | 0899
DEC
54
758 | | SAN ANGELO, | TEXAS
TB30 | TB40 | TDAS | тв50 | ELEVATION | | TB65 | LA
TB70 | T = 31.4 | |---|---------------------------|-----------------------------|----------------------------|------------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------------| | SOUTH-VERT | . (M=12)
2423.74 | (M=12)
444.15 | TB45
(M= 1)
246.08 | (M= 1) | T855
(M= 1)
98.64 | TB60
(M≈ 1)
71.29 | (M _m 1) | (M= 1)
44.10 | TB80
(M= 1)
31.39 | | VT2/DD
VT3/DD | 2070.55
1798.99 | 379.43
329.66 | 209.76
182.19 | 127.00 | 84.08
73.03 | 60.77
52.78 | 46.67
40.54 | 37.59
32.65 | 26.76
23.24 | | MONTHLY DD
ANNUAL DD | 15
36 | 82
240 | 135
464 | 223
784 | 337
1229 | 466
1800 | 606
2512 | 753
3387 | 1058
5795 | | PARAMETER A
AZIMUTH AND | | .363 | .383 | . 444 | .474 | .487 | .494 | .503 | .511 | | A 1
A2 | 362B
1.7246 | 1316
.7733 | .0225
.3461 | .0178
.3829 | .0161
.4252 | .0143
.4874 | .5619 | .0070
.6537 | .0014
.9348 | | A3
A4 | -1.8124
.9361 | 8351
.4602 | 3671
.3460 | 4207
.3569 | -,4768
.3908 | 5579
.4242 | 6560
.4794 | 7800
-5482 | -1.1763
.7633 | | A5
B1
B2 | .3306
.0190
-1.1075 | . 1088
.0190
-1. 1075 | 0330
0174
-1.0139 | ~.0305
~.0174
-1.0139 | 0308
0174
-1.0139 | 0349
0174
-1.0139 | ~.0416
~.0174
~1.0138 | 0514
0174 | 0913
0174 | | 83
84 | .6698
.8585 | .6698
.8585 | .5414
.9273 | .5413
.9273 | .5414
.9273 | .5414 | .5413
.9273 | -1.0138
.5413
.9273 | -1.0139
.5414
.9273 | | B5
TOTAL ANNUAL | -1.3460 | -1.3460 | -1.3437 | -1.3437 | -1.3436 | -1.3436 | -1.3436 | -1.3437 | -1.3436 | | DUE SOUTH A | | OTA1
C1 = | = 318557
0130 | C2 = 1763 | A2 = 26526
C3 = - | | QTA3 = 2
C4 = 1.8735 | 27983
C5 =-1. | 2525 | | MONTH:
TAVE: | JAN FEB
45 50 | 55 | APR
66 | MAY JUN
75 BO | JUL
83 | AUG
81 | SEP 0CT
17 66 | NOV
56 | DEC
47 | | QHOR: | 936 1222 | 1660 | 1903 | 2067 2174 | 2170 | 1959 | 1682 1319 | 1075 | 952 | | SAN ANTONIO, | TEVAC | | | | ELEVATION | 1 _ 10A | | 1.6 | ī = 29.5 | | SOUTH-VERT | TB30 | TB40
(M=12) | TB45
(M=12) | | 1855 | TB60 | 1865
(M=12) | T870
(M=12) | TB80
(M=12) | | VT1/DD
VT2/DD | NA
NA | 689.39
587,40 | 342.79
292.07 | iga ağı | 125 01 | 85.83
73.13 | 63.36
53.99 | 48.98
41.73 | 32.39
27.59 | | VT1/DD
VT2/DD
VT3/DD
MONTHLY DD
ANNUAL DD | NA
3 | | 253.64
83 | 143 | 106.52
92.50
227 | 63.51
331 | 46.88
448 | 36.24
580 | 23.96
877 | | PARAMETER A | NA. | 78
.692 | 200
206 - | 425
.571 | 771
.495 | 1242
.471 | 1594 | 2609
. 452 | ·4879
.459 | | AZIMUTH AND
A1
A2 | I TILT COEF.
NA
NA | .0485
.0702 | .0633
.1959 | .0919
.3719 | .1116
.5045 | .1179
.6093 | .1201
.7251 | . 1202
.8731 | .1113
1.2344 | | A3
A4 | NA
NA | 0906
0540 | 2395
.1477 | 4391 | 5891
3714 | 7147
4476 | 8595
.5333 | ~1.0554
.6435 | -1.5442
-9074 | | A5
B1 | NA
NA | 0090
1015 | 0107
1015 | 0056
1015 | 0010
1015 | 0016
1015 | 0062
1015 | 0181
1015 | 0441
1015 | | 82
83 | NA
NA | 9964
-5729 | 9964
.5730 | 9964
.5729 | 9964
.5729 | 9964
.5729 | 9964
.5729 | 9964
.5729 | 9964
.5729 | | B4
B5 | NA
NA | .9230
-1.2855 | .9230
-1.2855 | .9229
-1.2855 | .9230
-1.2855 | .9230
-1.2854 | .9230 | .9229
-1.2854 | .9229
-1.2854 | | | ND VERTICAL | OTAI | = 280269 | 00 1018 | FA2 = 23323 | 38
5398 | QTA3 = 2
C4 = 1.9101 | 00519 | 1500 | | MONTH:
TAVE: | TILT COEF. JAN FEB 51 54 | MAR | 0924
APR
68 | C2 =1215
MAY JUN
73 80 | JUL | | SEP OCT
79 69 | C5 =-1.
NOV
59 | DEC
51 | | QHOR: | 934 1131 | | 1559 | 1855 2080 | 2175 | 1890 | 1664 1324 | 991 | 854 | | | | | | | | | | | | | SHERMAN, TEX | TB30 | _T840 | TB45 | TB50 | ELEVATION | TB60 | TB65 | TB70 | TB80 | | \$0UTH-VER1
VT 1/00
VT2/00 | 1663.85
1419.62 | (M= 1)
251.15
214.28 | (M= 1)
138.18
117.90 | (M= 1)
87.93
75.02 | (M= 1)
62.16
53.03 | (M= 1)
47.38
40.42 | (M= 1)
37.95
32.38 | (M= 1)
31.37
26.77 | (M= 1)
23.13 | | VT3/DD
MONTHLY DD | 1232.91 | 186.10
108 | 102.39 | 65.15
309 | 46.06
437 | 35.11
574 | 28.12 | 23.25
866 | 19.74
17.14
1175 | | ANNUAL DD
PARAMETER A | 30
, 49 1 | 222
.728 | 477
.694 | 872
,648 | 1407
.599 | 2091
.571 | | 3902
.539 | 6435
.549 | | | 71LT COEF.
0550 | 0464 | 0659 | 0832 | 0975 | 1068 | | 1206 | 1238 | | A2
A3 | .2532
3299 | .2047
2549 | .2711
3213 | .3346
3839 | .3955
4445 | .4552
5088 | .5386
6123 | .6466
7562 | .8788
-1.0793 | | A4
A5 | .2139
0362 | . 1663
0175 | .2132
0085 | .2599
0005 | .3069
.0049 | .3530 | .4183
.0011 | .5022
0115 | .6794
0426 | | B1
B2
B3 | .0451
-1.0327
.6173 | .0451
-1.0327
.6173 | .0451
-1.0327
.6172 | .0451
-1.0327
.6173 | .0451
-1.0327
.6173 | .0451
-1.0327
-6172 | .0451
-1.0327
.6172 | .0451
-1.0327
.6173 | .0451
-1.0327 | | 84
85 | .8355
-1.2717 | .8354
-1,2717 | .8355
-1.2717 | .8355
-1.2717 | .8355
-1.2717 | .8355
-1.2717 | .835 5 | .8355
-1.2717 | .6173
.8354
-1.2716 | | TOTAL ANNUAL | | RADIATION | = 292410 | 0' | TA2 = 24340 | | QTA3 = 2 | _ | - , , , , , , | | AZIMUTH AND
MONTH: |) TILT COEF.
JAN FEE | Č1 =
MAR | 0181
APR | C2 =1871
MAY JUN | C3 = -
JUL | 4729
AUG | C4 = 1.7973
SEP OCT | C5 = -1.
NOV | DEC | | TAVE:
QHOR: | 42 47
759 1026 | | 64
1627 | 71 79
1902 2112 | 83
2066 | 83
1925 | 77 65
1652 1260 | 53
910 | 45
113 | | | | | | | | | | | | | WACO, TEXAS TB30 SOUTH-VERT. (M= 1) VT1/DD NA 326.27 VT2/DD NA 277.68 VT3/DD NA 241.07 MONTHLY DD 13 79 ANNUAL DD PARAMETER A AZIMUTH AND TILT COEF. | (M= 1) (M=
186.57 118
158.78 100
137.85 87
138
399 | .58 80.16
.92 68.22 | TB60 (M= 1) (M= 57.83 44 49.22 31 42.73 36 445 1729 2 | LAT = 31.6
TB80 TB80
E 1) (M= 1) (M= 1)
1.02 35.24 24.90
7.46 29.99 21.19
2.52 26.04 18.40
585 731 1035
2443 3300 5601
571 .573 .598 | |--|---|--|--|--| | A1 NA .0688 A2 NA .1782 A3 NA2285 A4 NA .1922 A5 NA0506 B1 NA0738 B2 NA9332 B3 NA .4975 B4 NA .9297 B5 NA -1.2604 | . 1883 | 584 .2929
B17 ~.0873
7380738
3329332
976 .4975
296 .9296 | .2788
3597
.3218
0909
0738
9332
.4975 | 0846 .0827 .0738 08181 .3801 .5616 4084 4890 7403 5828 .4017 .5336 9934 0997 1187 9738 0738 0738 3032 9332 9332 1976 .4976 .4976 2296 .9296 .9296 2603 -1.2604 -1.2603 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA1: AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 46 48 55 QHOR: 801 1119 1488 | = 285595
0520 | QTA2 = 23761
1245 | 4 Q1
.5457 C4 =
AUG SEP
B4 77
1938 1537 | IA3 = 204200
1.8687 | | WICHITA FALLS, TEXAS TB30 TB40 SOUTH-VERT. (M=12) (M= 1) VT1/DD 821.27 206.04 VT2/DD 702.01 175.75 VT3/DD 609.89 152.64 MONTHLY DD 39 148 ANNUAL DD 102 463 PARAMETER A .543 .410 AZIMUTH AND TILT COEF. | 107.03 73
92.96 63
244 1
786 11 | | T860 (M= 1) (M= 49.44 44.17 3-36.62 24.518 2508 | LAT = 34.0
1865 TB70 TB80
= 1) (M= 1) (M= 1)
0.01 33.39 24.95
4.13 28.48 21.28
3.64 24.74 18.48
764 915 1225
3378 4402 6994
.503 ,516 .522 | | A10371 .0163
A2 .4692 .3342
A349263787
A4 .3084 .2714
A5 .04220032
B1 .01370051
B2 -1.1104 -1.0296
B3 .6939 .5867
B4 .7799 .8659
B5 -1.2934 -1.3049 | .3631 .3'40734' .2901 .3 .0004 .0'00510' -1.0296 -1.0' .5866 .5' | 133 .3512
021 .0016
0510051
296 -1.0296
866 .5866
659 .8659 | .4770
5441
.3797
0066
0051
1.0296 -1
.5866
.8659 | 0043 .0023 0012 5380 .6397 .9262 5341 7778 -1.1752 4281 .5081 .7309 0203 0379
0792 0051 0051 0051 0296 -1.0296 -1.0296 3867 .5866 .5866 8659 .8659 .8659 3050 -1.3050 -1.3050 | | TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND TUENT COEF. AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 40 43 51 QHOR: 846 1141 1561 | = 313769
0162 | QTA2 ± 26125
2091 | | FA3 = 224470
?.8060 | | BRYCE CANYON, UTAH TB30 TB40 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 122.18 68.37 VT2/DD 104.68 58.57 VT3/DD 90.99 50.91 MONTHLY DD 344 615 ANNUAL DD 1352 2929 PARAMETER A .533 .494 AZIMUTH AND TILIT COEF. | (M= 1) (M= 54.76 45 46.91 39 40.78 33 768 3969 5 | ELEVATION TB55 1) (M= 1) .58 39.02 .05 33.43 .94 29.06 922 1077 147 6450 454 .429 | T860
(M= 1) (M:
34.11 3:
29.23 2:
25.40 2:
1232
7884 | LAT = 37.7 TB65 TB70 TB80 = 1) (M= 1) (M= 5) 0.30 27.26 22.11 0.96 23.35 17.69 2.57 20.30 14.85 1387 1542 1057 19431 11088 14616 0.357 .310 .348 | | A1 .0380 .0507
A2 .6295 1.0064
A37364 -1.1932
A4 .3649 .6140
A5 .00280138
B1 .0044 .0044
B2 -1.2067 -1.2067
B3 .7453 .7453
B4 .7244 .7244
B5 -1.3460 -1.3460 | 1.2122 1.4
-1.4561 -1.7
.7566 .9
03270
.0044 .0
-1.2067 -1.2
.7453 .7 | 387 -2.0753
095 1.0906
5440807
044 .0044
067 -1.2067
453 .7453
244 .7244 | 2.0203 2.
-2.5050 -3.
1.3213 1.
-1133
.0044 -1.2067 -1.
.7453 | 0889 .1062 0088 4588 3.0538 -9.0433 0721 -3.8331 12.2737 6246 2.0308 -6.4512 1528 1969 1.1358 0044 .0868 2067 -1.2067 1.4007 7453 .7453 -2.5107 7244 .7244 3.3945 3460 -1.3460 -1.4186 | | | = 402394
.0623 | OTA2 = 33572
2410 | | TA3 = 288411 1.7383 | ``` CEDAR CITY, UTAH ELEVATION = 5617 LAT = 37.7 TB40 TB45 TB50 7B55 (M=12) TB65 T860 TB70 T880 SOUTH-VERT. (M=12) (M≈12) 37.54 32.18 27.97 (M=12) (M=12) (M=12) (M≈12) 32.17 27.58 (M=12) (M≈ 12) VT1/OD 251.94 215.99 187.74 45.06 38.63 103, 10 73.92 56.28 28.14 22.5 VT2/00 88.39 63.37 48.25 24.13 19.30 VT3/DD 33.58 774 76.83 55.08 41.94 23.97 20.97 1239 16.78 MONTHLY DD 138 338 472 619 929 1084 1549 ANNUAL DD 456 1364 2055 2890 3865 4984 6258 7679 10868 PARAMETER A 495 .507 .517 .519 .520 AZIMUTH AND TILT COEF. .518 .479 -.0853 -.0784 -.0738 -.0711 -.0695 -.0675 -.0658 -.0667 A2 5882 1.1511 -1.2737 1.5325 -1.8065 .8468 .9297 1.0318 1.2825 1.3989 1.9776 A3 -.6061 -.8698 -.9771 -1.1137 ~1.4513 -1.6147 -2.4246 A4 .3602 .5069 .5632 .6355 .7210 .8161 .9038 1.0073 1.3446 A5 .0189 .0474 .0395 .0262 0096 -.0096 -.0311 -.0602 -. 1426 В1 .0380 .0380 -1.2279 .0380 .0380 0380 .0380 .0380 .0380 .0380 B2 -1.2279 -1.2279 .7970 -1.2279 .2279 -1.2279 -1.2279 -1.2279 -1.2279 .7970 .7970 .7970 .7970 .7970 .7970 .7970 .7970 R4 .6626 .6626 .6626 .6626 6626 .6626 .6626 .6626 .6626 -1.2980 -1.2979 -1.2979 -1.2979 -1.2979 -1.2979 -1.2979 -1.2979 -1.2979 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL OTA1 385473 QTA2 -.2003 = 323141 0TA3 = 275728 AZIMUTH AND TILT COEF. C2 = 0403 03 = -.5336 C4 = 1.7860 C5 =-1.3965 MAR 38 MONTH: FEB APR 47 MAY 57 JUN JUL AUG SEP NOV 001 DEC TAVE: 33 68 73 71 65 50 38 30 OHOR: 1168 1570 2122 2513 2659 2517 2223 1993 1484 992 756 SALT LAKE CITY, UTAH ELEVATION = 4226 £AT ≈ 40.8 TB30 TB40 TB45 TB50 TB55 TB60 TB65 TB70 TB80 (M= 1) 44.20 37.82 SOUTH-VERT, (M= 1) (M= 1) (M= 1) 28.34 (M= 1) 34.59 (M= 1) (M= 1) (M= 1) (M=1) VT 1/DD 133.39 60. 13 23,99 20.80 18.36 14.87 VT2/DD 51.45 114.13 29.60 24.25 20.53 17.80 15.71 12.72 25.72 701 VT3/DD 99.16 44.70 32.86 21.07 856 17.84 15.46 13.65 11.05 MONTHLY DD 182 403 549 1011 1166 1321 1631 ANNUAL DD 395 1263 2812 1957 3814 4969 6251 7646 10748 PARAMETER A .568 . 804 .823 . 834 .838 .837 .820 AZIMUTH AND TILT COEF. A1 -.0088 -.0057 -.0043 -.0033 -.0014 -.0024 -.0006 .0002 .0017 .2248 A2 A3 -. 1312 .0069 .0751 . 1501 .3001 .3761 .4585 -.6273 .6295 .0762 -.0538 -. 1313 -.2226 -.4137 -.5177 ~.8648 .5441 A4 -.0176 .0688 .1168 .1720 .2276 4076 .2845 .3446 A5 -.0827 -.0691 -.0717 -.0787 ~.0874 -.0980 -. 1112 -. 1268 -.0013 -. 1638 в١ -.0013 -.0013 -.0013 -.0013 -.0013 -.0013 -.0013 ~.0013 82 -1.1304 -1.1304 -1.1304 -1.1304 .7409 -1.1304 -1.1304 -1.1304 -1.1304 -1.1304 .7408 B3 .7409 .7409 .7409 .7409 .7409 .7409 .7409 B4 .6648 6648 .6648 6648 6648 .664B 6648 .6648 .6647 B5 1.2193 -1.2194 -1.2194 -1.2193 -1.2194 -1.2193 -1.2194 -1.2193 -1.2193 TOTAL ANNUAL TRANSMITTED RADIATION OTA2 = 295942 DUE SOUTH AND VERTICAL = 355426 OTA1 QTA3 = 254000 C2 = MAY AZIMUTH AND TILT COEF. 0060 4973 C3 = C4 = 1.7652 C5 = -1.3790 JUN 67 MONTH: JAN MAR APŘ JUL AUG 74 SEP 0CT 51 NOV DEC TAVE: 27 57 41 48 78 65 38 OHOR: 596 991 1518 1916 2312 2529 2628 2307 1863 1307 752 558 BURLINGTON, VERMONT ELEVATION = 341 LAT = 44.5 TB30 TB40 TB45 T855 TB50 TB60 TB65 TB70 TB80 SOUTH-VERT. (M=12) 16.38 14.01 (M=12) 13.87 11.86 (M=1) (M=12) (M=12) 11.96 10.23 (M=12) 10.47 (M=12) 9.31 (M=12) VT1/00 VT2/00 24.89 21.30 42.90 19.91 7.63 36,70 17.04 7.97 8.96 6.52 12.17 797 VT3/00 31.88 18.50 14,80 10.30 8.88 1092 7.78 6.92 5.67 MONTHLY DD ANNUAL DD 395 680 655 1246 1401 1711 1180 2430 3260 4214 5310 6552 .789 7945 9483 12912 PARAMETER A . 46B .563 .621 .678 .735 .839 .881 .936 AZIMUTH AND TILT COEF. .0137 .0110 A٦ .D442 .0428 .0415 -0402 .0389 .0372 .5654 -.5338 A2 .5290 .5282 .5131 .5010 .4945 .4927 . 4979 .5377 ΑĴ -.5667 -.5096 .5776 -.5598 -.5602 -.5666 -.5820 -.6516 .3187 A4 .3108 -4026 .3921 .3845 .3823 .3846 .3934 . 4361 A5 .0979 .0812 -.0256 0287 -.0266 -.0327 -.0457 -.0384 -.0672 B1 -.0039 -.0039 -.D154 -.0154 -.0154 -.0154 -.0154 -.0154 -.0154 -1.1052 -1.1052 B2 -1.1048 -1.1048 -1.1048 -1.1048 -1.1048 -1.1048 -1.1048 .7547 B3 .7850 .5604 .754B .7850 .7850 .7850 .7850 .7850 .7851 6040 6040 B4 .5604 5604 .5604 5604 .5604 .5604 B5 -1. 1649 -1.1649 -1.1165 -1.1165 -1.1165 -1.1165 -1.1165 -1.1165 -1.1165 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL OTA1 254757 OTA2 = 212455 OTA3 = 182647 AZIMUTH AND TILT COEF. C2 = .0167 1.5869 C3 = -.2984 C5 =-1.2017 C4 = MONTH: FEB 20 JAN MAR 27 SEP 58 NOV 38 APR 41 MAY 54 JUN JUL AUG OCT DEC 24 TAVE: 18 64 70 67 49 QHOR: 420 706 1073 1423 1734 2045 1975 1651 1265 829 329 434 ``` ``` NORFOLK, VIRGINIA ELEVATION = 30 LAT = 36.9 T830 SOUTH-VERT. (M= 1) VT1/00 TB40 TB45 TB50 1855 TB60 TB65 TB70 T880 (M= 2) 63.13 (M= 1) 105.29 (M= 1) (M= 2) 43.09 (M= 2) 32.60 27.60 (M= 2) 26.21 22.19 (M= 2) 21.92 (M± 2) 16.51 173.32 VT2/DD 572.63 148.12 89.98 53.45 36.48 18.56 13.98 46.33 297 VT3/DD 497.39 128.65 78.16 31,62 23,92 575 2778 19.24 16.09 12.12 MONTHLY DD 41 159 261 435 715 855 1135 ANNUAL DD 48 368 764 1302 1971 3736 4875 7798 PARAMETER A .340 .509 .346 .463 .571 .637 .671 .695 .750 AZIMUTH AND TILT COEF. -. 1499 .1183 .2165 -.2242 -. 1770 -.1572 -.1451 -. 1326 ~.4382 .3078 Α2 .0084 .4235 .8522 -.5457 -.7410 -.3579 --.2774 .1277 -.0008 A3 ~.0076 -.4124 -.8173 .5844 .4116 -. 1089 .353B .2591 A4 -.0053 . 1639 -.2244 -. 1411 -.0848 -.0322 .0231 . 1559 . 1354 -.3315 A5 .0095 -.2677 -.2437 -.2376 -.2351 B ? -.0393 -.0393 -.0393 .0885 .0885 .0885 .0885 .0885 .0885 -.7389 82 -1.1089 -1.1089 -1.1089 -.7389 -.7389 -.7389 -. 7389 -.7389 83 .7122 .7122 .7122 .3318 .3319 .3319 .3318 1.0540 .331B .3318 R4 7917 7816 .7837 1.0540 1.0540 1.0540 1.0540 1.2555 85 -1.2555 -1.2555 -1.1589 -1.1588 -1.1588 -1.1589 ~1.1589 -1.1589 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTA1 C1 = 279113 OTA3 = 199876 AZIMUTH AND TILT COEF. 0046 C2 = C3 = -.3243 C4 = 1.6957 C5 =-1.1985 MONTH: JAN FEB MAR APR MAY JUN JUL SEP OCT 57 AUG VON DEC TAVE: 78 39 39 47 60 67 74 76 53 41 737 OHOR: 796 1240 1646 1912 2018 1905 1711 1490 1012 881 572 RICHMOND, VIRGINIA ELEVATION = 164 LAT = 37.5 TB30 TB40 TB45 TB50 TB$5 TB60 TB65 TB70 TBBO SOUTH-VERT. (M= 2) 1/DD 462.79 (M= 1) 72.25 (M= 1) 51.06 (M± 1) 25.87 (M= 1) 22.11 (M= 1) 114.75 (%= 1) (M=1) (M± 1) 17.12 VT1/DD VT2/DD 31.08 38.75 392.36 340.22 47 97.97 61.69 43.60 33.09 26.53 22.09 18.88 14.62 VT3/BD 85.08 53.57 37,86 28.73 23.04 19.18 16.39 12.69 MONTHLY DD 757 3154 205 325 461 607 909 1063 1373 ANNUAL DD PARAMETER A 115 1587 595 1023 2299 4165 5354 8341 . 34 1 . 534 .603 .623 .622 .613 .610 613 -611 .1175 .0953 . 1006 .0932 .0918 .0887 .0841 .0767 .3025 -.2930 .2945 -.2980 .3313 .3872 .4540 .5231 .6042 .8413 -.3464 -.4995 -.4167 -.5888 -.6982 -1.0256 A4 -.4589 . 1883 . 1889 .2165 .3027 2560 .3520 .4110 .5874 A5 -. 1989 .0561 .0450 .0420 0399 .0384 .0341 .0258 -.0032 B1 .0517 -.0251 -.0251 -1.0612 -.0251 .0251 -.0251 -.0251 -.0251 -.0251 -.8165 82 -1.0612 -1.0612 .6763 -1.0612 -1.0612 -1.0612 -1.0612 -1.0612 .6763 B3 .3952 .6763 .6763 .6763 .6763 .6763 .6763 1.0516 .7876 B4 .7876 .7876 . 7876 .7876 .7876 .7876 B5 -1.2162 -1.2233 -1.2233 -1.2233 -1.2233 -1.2233 -1.2233 -1.2233 -1.2233 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTA1 267831 QTA3 = 192257 .0080 C3 = -.2735 C4 = 1.5953 C5 =-1.1485 SEP MONTH: JAN MAR APR MAY AUG JUN JUL NOV OCT DEC TAVE: 35 39 46 58 71 76 66 77 69 58 49 41 QHOR: 661 882 1236 1524 1856 995 1685 1772 1632 1402 747 569 ROANOKE, VIRGINIA ELEVATION = 1175 LAT = 37.3 TB30 TB40 TB45 TB50 TB55 TB60 1865 TB70 TB80 (M= 1) 25.11 21.41 18.59 SOUTH-VERT. (M= 2) (M= 1) 111.19 (M= 1) (Mm 1) 49,16 (M= 1) 37.52 (M= 1) 21.47 18.31 15.90 1070 (M= 1) (M= 1) 16.65 14.20 VT1/00 VT2/00 384.29 69.8Ò 30.17 32.00 27.78 25.13 22.34 325.87 94.83 59.53 41.92 82.33 207 VT3/DD 282.56 51.69 36.40 12.33 1380 MONTHLY DD 61 154 329 467 612 761 915 ANNUAL DD 662 2484 1118 1722 3387 4451 5708 8795 PARAMETER A .623 433 .556 .604 .617 .621 .626 .640 .647 AZIMUTH AND TILT COEF. -.0692 -.0709 -.0756 -.0807 -.0870 -.0972 -.0913 -.0930 -.6152 A2 .2131 -.2613 .2211 -.2753 .6770 -.8923 . 2496 .2901 .3456 .4021 .4649 -.5952 .5400 A3 -.3138 -.3663 -.4369 -.5098 A4 -.3942 .2146 .2218 .33 17 .2464 2821 .3808 .4328 .6053 -. 1299 A5 -.0279 -.0315 -.0366 -.0430 -.0512 -.0697 -. 1059 -.0594 Βī .0003 .0324 .0324 .0324 .0324 .0324 .0324 .0324 .0324 82 -.8194 -.9990 -.9990 -6175 -.9990 9990 -.9990 -.9990 -.9990 -.9990 B3 .3710 .6175 .6175 .6175 .6174 .6175 .6175 .6175 B4 1.0423 .7954 .7954 -1.2157 .7954 . 7954 7954 7954 -1.2157 BS -1.2446 -1.2157 -1.2157
-1.2758 -1.2157 -1.2157 -1.2158 TOTAL ANNUAL TRANSMITTED RADIATION QTA2 = 228703 QTA1 = 274142 C1 = -.0268 DUE SOUTH AND VERTICAL QTA3 = 196694 AZIMUTH AND TILT COEF. C3 = -.3020 JUL AUG C2 = C4 = 1.6294 C5 =-1.1782 MONTH: JAN MAR APR FFR MAY JUN AUG SEP OCT NOV DEC TAVE: 35 38 44 56 64 72 75 73 69 47 56 39 OHOR: 660 904 1259 1578 1749 1953 1806 1588 1387 1086 750 581 ``` | OLYMPIA, WASH SOUTH-VERT. VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTK AND | HINGTON
TB30
(M= 1)
515.23
439.23
381.21
18
35
.678 | TB40
(M= 1)
82.50
70.33
61.04
109
416
.869 | TB45
(M=12)
37.58
32.01
27.77
185
939
.971 | TB50
(M=12)
21.13
18.00
15.62
329
1793 | ELEVATION
TB55
(M=12)
14.38
12.25
10.63
484
2929
1.153 | 200
TB60
(M=12)
10.89
9.27
8.05
639
4301
1.209 | TB65
(M=12)
8.76
7.46
6.48
794
5851 | 1870
(M=12)
7.33
6.24
5.42
949
7507
1.271 | T = 47.0
TB80
(M=12)
5.53
4.71
4.08
1259
11027
1.289 | |--|--|--|--|--|--|--|--|--|---| | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | .0168
.0047
.0009
0020
.0070
.0301
9500
.6595
.6533
-1.0310 | 0220
.1406
1405
.0797
.0218
.0301
9500
.6595
.6533
-1,0310 | | 0037
.0898
1378
.1312
0677
.0134
9066
.6566
.6177 | | | | 011/
-1581 | 0149
.1985
2866
.2203
0898
.0134
9066
.6565
.6177 | | TOTAL ANNUAL TO DUE SOUTH AN AZIMUTH AND MONTH: TAVE: QHOR; | UN VERTICAL | QTA1 = C1 = -
C1 = -
MAR
42
8 876 | 217974
.0711
APR
46
1283 | דמ | A2 = 18171
C3 = -
JUL
63
2017 | 6
.2984
AUG
61
1689 | QTA3 = 15
C4 = 1.5596
SEP OCT
58 50
1174 613 | | 1267
DEC
39
226 | | SEATTLE, WASI SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A AZIMUTH AND | HINGTON TB30 (M=12) NA NA NA 14 15 NA | TB40
(M=12)
81.39
69.50
60.35
89
284
.782 | TB45
(M= 1)
40.94
34.84
30.23
203
732
.890 | TB50
(M= 1)
24.11
20.52
17.80
345
1500 | ELEVATION
TB55
(M=12)
15.97
13.64
11.84
456
2585
1.039 | ## 400
TB60
(M=12)
11.91
10.17
8.83
611
3957 | T865
(M=12)
9.50
8.11
7.05
766
5531 | TB70
(M=12)
7.90
6.75
5.86
921
7223 | T = 47.4
TB80
(M=12)
5.91
5.05
4.38
1231
10773
1.235 | | A1
A2
A3
A4
A5
B1
B2
B3
B4
B5 | NA
NA
NA
NA
NA
NA
NA
NA | 0226
.2407
1809
.1706
.0653
.0271
-1.0026
.7267
.5384
-1.0356 | 0415
.0189
0879 | 0414
.0600
1312
.1006
0811
.0391
8681
.6176 | 0248
.2787
2629
.2208
.0266
.0271 | 0230
.2735
2711
.2234
.0132
.0271
-1.0026
.7267 | 0227
.2776
2892
.2338
0004
.0271 | 0234
.2914
3171
.2519
0133
.0271
-1.0026
.7268
.5384
-1.0357 | 0260
.3280
3779
.2931
0347
.0271
-1.0026
.7267 | | TOTAL ANNUAL DUE SOUTH AL AZIMUTH AND MONTH: TAVE: QHOR: | TRANSMITTED
ND VERTICAL
TILT COEF.
JAN FEE
38 42
278 466 | QTA1 = C1 = -
C1 = -
MAR
2 42
5 897 | 2 19982
0636
APR
46
1294 | QT
C2 =2369
MAY JUN
53 59
1647 1766 | A2 = 18336
C3 = -
JUL
62
1997 | 66
2890
AUG
63
1679 | QTA3 = 15
C4 = 1.5810
SEP OCT
58 51
1147 637 | 57708
C5 =-1.
NOV
46
329 | 1581
DEC
40
201 | | SPOKANE, WASI SOUTH-VERT VT1/DD VT2/DD VT3/DD MONTHLY DD ANNUAL DD PARAMETER A | TB30
. (M=12)
64.12
54.80
47.59
143
378
.766 | TB40
(M=12)
24.41
20.86
18.11
376
1338
.983 | T845
(M±12)
17.33
14.81
12.86
530
2135
1.048 | T850
(M=12)
13.41
11.46
9.95
685
3113
1.107 | ELEVATION
TB55
(M=12)
10.93
9.34
8.12
840
4247
1.159 | F = 2365
TB60
(M=12)
9.23
7.89
6.85
995
5540 | TB65
(M±12)
7.99
6.83
5.93
1150
6982
1.255 | T870
(M=12)
7.04
6.02
5.22
1305
8536
1.291 | THE TENT TH | | AZIMUTH AND
AI
A2
A3
A4
A5
B1
82
83
84
B5 | .0171
.0392
-0502
-0502
-0277
.0264
-1.0527
.7594
.5239
-1.0526 | .0051
.0657
0861
.0779
0347
0264
-1.0527
.7593
.5239
-1.0527 | .0028
.0786
1038
.0913
0393
.0264
-1.0527
.7594
.5239
-1.0526 | .0017
.0931
1235
.1052
0436
.0264
-1.0527
.7594
.5238
-1.0526 | .0013
.1079
1435
.1183
0473
.0264
-1.0527
.7594
.5239
-1.0527 | .0011
.1205
1611
.1292
0504
.0264
-1.0527
.7594
.5238
-1.0526 | .0010
.1330
1793
.1401
0541
.0264
-1.0527
.7594
.5238
-1.0526 | .0009
.1469
2003
.1527
0589
.0264
-1.0527
.7593
.5239
-1.0527 | .0008
.1810
2521
.1842
0716
.0264
-1.0527
.7594
.5239
-1.0526 | | TOTAL ANNUAL DUE SOUTH A: AZIMUTH AND MONTH: TAVE: QHOR: | ND VERTICAL | QTA1 =
C1 =
B MAR
B 37 | 283427
.0359
APR
45
1521 | C2 =2567
MAY JUN
56 62
1929 2110 | A2 = 23657
C3 = -
JUL
68
2293 | 70
3634
AUG
68
1942 | QTA3 = 2
C4 = 1.5818
SEP OCT
59 46
1521 860 | 03465
C5 =-1.
NOV
35
434 | .2799
DEC
27
243 | | WHIDBEY ISLAND, WASHINGT TB30 SOUTH-VERT. (M= 1) VT1/DD NA VT2/DD NA VT3/DD NA VT3/DD NA MONTHLY DD 8 ANNUAL DD 14 PARAMETER A NA AZIMUTH AND TILT COEF. AI NA A2 NA A3 NA A4 NA A5 NA B1 NA B1 NA B2 NA B1 NA B2 NA B1 NA B2 NA B1 NA B2 NA B3 NA B4 NA B5 NA B5 NA TOTAL ANNUAL TRANSMITTED | TB40 (M= 1) (M 97.08 4 82.72 3 71.78 3 86 221 1.099 101890293049001850195019501959193659061589770 RADIATION | = 1) (M
2.85 2
6.51 2
1.68 1
195
557
-153 1
0152
0492
0545
0603
0149
0149
0195
6590
6158 | ELEVATI TB50 T855 = 1) (M= 1) 5.17 17.35 5.17 1.44 14.79 8.61 12.83 332 481 1231 2296 .123 1.116 01950233 .0853 .1235 09561444 0959 .1315 02120293 01950195 91930195 9193 .6591 6158 .6158 97709770 | ON = 56
TB60
(M=12)
13.00
11.04
9.58
437
373
1.171
0838
0000
0835
.1464
1455
.0794
7880
7880
7880
6470
8769 | TB65
(M=12)
9.59
8.15
7.07
592
5424
1.289
0735
.0295
1129
.1540
1341
.0794
7880
.5716
.6470
8769 | TB70 (M=12) 7.60 6.46 5.60 747 7203 1.3500694 .05161328 .07947880 .5717 .64708769 | T = 48.3
T880
(M=12)
5.37
4.57
3.96
1057
10838
1.402
0671
.0802
1757
.1892
1366
.0794
7880
.5716
.6470
8770 |
---|---|---|---|--|---|---|---| | DUE SOUTH AND VERTICAL AZIMUTH AND TILI COEF. MONTH: JAN FEE TAVE: 39 42 QHOR: 266 536 | 43 | 9339
07 CZ =
PR MAY
48 51
47 1720 | QTA2 = 191
3144 | 1899
AUG
61 | QFA3 = 16
C4 = 1.5023
SEP OCT
61 51
323 615 | 64964
C5 =-1.
NOV
44
347 | 1387
DEC
45
206 | | YAKIMA, WASHINGTON TB30 SOUTH-VERT. (M= 1) VT1/DD 63.62 VT2/DD 54.33 VT3/DD 47.18 MONTHLY DD 184 ANNUAL DD 304 PARAMETER A .610 AZIMUTH AND TILT COEF. | (Mr 1) (M
30.55 2
26.09 1
22.65 1
383
1070 | = 1) (M=
2.51 1:
9.22 14
6.69 1:
520
1737 : | ELEVATI
1850 T855
= 1) (M= 3)
7.51 14.24
4.95 12.16
2.98 10.56
668 822
2601 3657
.011 1.059 | ON = 1066
TB60
(M= 1)
11.98
10.23
8.88
977
4863
1.099 | TB65
(M= 1)
10.34
8.83
7.67
1132
6219
1.135 | TB70
(M= 1)
9.09
7.77
6.74
1287
7699
1.163 | T = 46.6
T880
(M= 1)
7.33
6.26
5.43
1597
10970
1.195 | | A10170
A20461
A3 .0066
A40304
A50236
B10005
B2 -1.0361
B3 .7424
B4 .6068 | 0158
0310
.0030
0348
0005
-1.0361 -1.4
.7424
.6068 | 0095 .6
06056
0279 .6
04076
00056
0361 -1.6 | 7424 .7424
5068 .6068 | .0049
.0847
1522
.0971
0568
0005
-1.0361
.7424
.6068
-1.0696 | .7424
.6068 | .0078
.1301
2124
.1388
0689
0005
~1.0361
.7424
.6068
-1.0696 | .0096
.1830
-2877
.1885
0866
0005
-1.0361
.7424
.6068
-1.0696 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 28 36 QHOR: 331 687 | QTA1 = 29
C1 = .037
MAR AI
40 | 23 C2 =
PR MAY
48 59 | QTA2 = 243
~.2975 | 3294
AUG
69 | QTA3 = 20
C4 = 1.6141
SEP QCT
60 50
492 886 | 8984
C5 =-1.2
NOV
40
444 | 2710
DEC
30
298 | | CHARLESTON, WEST VIRGINIA 1830 SOUTH-VERT. (M= 1) VT1/DD 123.21 VT2/DD 104.98 VT3/DD 91.12 MONTHLY DD 133 ANNUAL DD 289 PARAMETER A .484 AZIMUTH AND TILT COEF. | TB40 (M= 1) (M= 53.33 39 45.44 33 308 907 | = 1) (M=
).52 30
3.68 25
3.23 22
415
1406 2 | ELEVATION 1855 (M= 1) (M= 1) (47 24.20 20.62 17.90 539 678 678 675 575 .592 | ON = 951
1860
(M=12)
19.55
16.65
14.45
645
3768
.631 | T865
(M≖12)
15.89
13.53
11.74
794
4875
.698 | T870
(M=12)
13.33
11.36
9.85
946
6159
.759 | T = 38.4
TB90
(M=12)
10.04
8.55
7.42
1255
9285
.849 | | A10037
A2 .2807
A32509
A4 .1325
A5 .0951
B10019
B29511
B3 .6166
B4 .7718 | .2958
2863
.1604
.0754
0019
9511
.6165
.7718 | 3552 ,4
36224
2115 .2
3684 .0
30190
35119
3166 .6 | 188 | 0047
.3761
4703
.4002
0970
0104
9181
.6123
.7322
-1.0766 | 0064
.3742
4759
.3955
0983
0104
9181
.6123
.7322
-1.0765 | 0074
.3831
4959
.4008
1022
0104
9181
.6122
.7322
-1.0765 | 0091
.4332
5802
.4444
1199
0104
9181
.6123
.7322
-1.0765 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 33 33 QHOR: 503 658 | QTAT = 226
C1 =041
MAR AF
44 = | 18 C2 =
PR MAY
64 61 | 0TA2 = 1904
2327 | 3226
AUG
71 | QTA3 = 16:
C4 = 1.6465
SEP OCT
67 55
268 1005 | 3704
C5 =-1.1
NOV
47
595 | 1022
DEC
39
400 | | EAU CLAIRE, WISCONSIN TB30 SOUTH-VERT, (M= 1) (M=12) VT1/DD 32.05 18.31 VT2/OD 27.44 15.65 VT3/DD 23.84 13.59 MONTHLY DD 593 647 ANNUAL DD 1592 2982 PARAMETER A .535 .735 AZIMUTH AND TILT COEF. A10494 .0030 A2 .3501 .1346 | TB45
(M=12)
14.81
12.66
10.99
800
3847
.807 | ELEVATION = 896 TB50 TB55 TB60 TB55 TB60 TB65 TB70 TB90 (M=12) (M=12) 12.41 10.68 9.37 8.35 7.53 6.29 10.61 9.13 8.01 7.14 6.43 5.38 9.22 7.93 6.96 6.20 5.59 4.67 955 1110 1265 1420 1575 1885 4813 5883 7068 8390 9858 13166 .871 .926 .976 1.023 1.065 1.125 .0119 .0137 .0145 .0146 .1566 .1681 .1798 .1923 .2079 .2523 | |--|--|--| | A326152422 A4 .1594 .2094 A5 .11503398 B1 .0227 .0132 B2 -1.1424 -1.0727 B3 .7824 .7708 B4 .5833 .5661 B5 -1.1910 -1.0924 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL OTA1 | 2443
.2041
1229
.0132
-1.0727
.7707
.5661
-1.0924 | 249625882698283130223623
.2019 .2034 .2068 .2122 .2216 .2552
111210330976093909250978
.0132 .0132 .0132 .0132 .0132 .0132
-1.0727 -1.0727 -1.0727 -1.0727 -1.0727 .7107
.7707 .7707 .7707 .7707 .7707 .7707
.5661 .5661 .5661 .5661 .5661
-1.0924 -1.0924 -1.0924 -1.0924 -1.0924 | | DUE SOUTH AND VERTICAL OTAL AZIMUTH AND TILT COEF. C1 = MONTH: JAN FEB MAR TAVE: 10 16 27 QHOR: 443 734 1091 | ≥ 260623
.0352
APR
45
1373 | OTA2 = 217759 OTA3 = 187372 C2 =3317 C3 =2398 C4 = 1.4977 C5 = -1.1950 MAY JUN JUL AUG SEP OCT NOV DEC 57 68 69 69 60 50 32 19 1706 1985 1867 1590 1201 815 439 312 | | GREEN BAY, WISCONSIN TB30 SOUTH-VERT. (M= 1) VT1/DD 38.83 24.64 VT2/DD 33.27 21.11 VT3/DD 28.91 18.35 MONTHLY DD 494 778 ANNUAL DD 1274 2564 PARAMETER A 606 AZIMUTH AND TILT COEF. | TB45 (M= 1) 20.55 17.60 15.30 933 3420 .642 | (M=12) (M=12) (M=12) (M=12) (M=12) (M=12) 17.13 14.62 12.74 11.28 10.13 8.40 14.68 12.52 10.91 9.66 8.67 7.20 12.75 10.88 9.48 8.40 7.54 6.25 893 1046 1201 1356 1511 1821 4394 5502 6757 8145 9677 13058 | | A1 .1198 .1231 A2 .2338 .3600 A321113465 A4 .1151 .1959 A5 .0465 .0554 B101280128 B2 -1.1764 -1.1764 B3 .8214 .8214 B4 .5741 .5741 B5 -1.1970 -1.1970 TOTAL ANNUAL TRANSMITTED RADIATION | .1195
.4099
4013
.2288
.0590
0128
-1.1764
.8214
.5742
-1.1970 | .3879 .3986 .4155 .4380 .4670 .5525 .3903 -41114404476452136465 .3188 .3231 .3344 .3516 .3753 .4467 .013301390170022002910490 .0960 .0960 .0960 .0960 .0960 .0960 .0960 .0960 .0960 .11549 -1.1549 -1.1549 -1.1549 .8165 .8165 .8165 .8165 .8165 .5309 .5310 .5310 .5310 | | DUE SOUTH AND VERTICAL OTAL | = 267987
-0354
APR
44
1416 | QTA2 = 224010 QTA3 = 192781 C2 =3578 C3 =2145 C4 = 1.4900 C5 =-1.2010 MAY JUN JUL AUG SEP OCT NOV DEC 54 64 69 67 58 50 35 21 1699 1856 1912 1598 1285 835 481 351 | | LA CROSSE, WISCONSIN T830 T840 SOUTH-VERT. (M= 1) (M= 1) VT1/DD 53.82 30.98 VT2/DD 46.10 26.53 VT3/DD 40.06 23.05 WONTHLY DD 396. 688 ANNUAL DD 968 2236 PARAMETER A 633 .506 AZIMUTH AND TILT COEF. | TB45
(M=12)
23.87
20.43
17.75
624
3036
.560 | (M=12) (M=12) (M=12) (M=12) (M=12) (M=12) 19.12 15.94 13.67 11.97 10.64 8.71 16.37 13.65 11.71 10.25 9.11 7.46 14.22 11.86 10.17 8.90 7.92 6.48 779 934 1089 1244 1399 1709 3938 4959 6117 7416 8859 12134 | | A1 .0461 .1001 A2 .3002 .5298 A3 -25044466 A4 .1525 .2572 A5 .0752 .1405 B106550655 B2 -1.1720 -1.1720 B3 .8021 .8021 B4 .6090 .6090 B5 -1.2114 -1.2113 TOTAL ANNUAL TRANSMITTED RADIATION | 0286
.4201
4258
.3787
0402
0231
-1.1422
.8079
.5631
-1.1461 | .4059 .4012 .4078 .4219 .4409 .5035 .4155 .4191 .4371 .4638 .4969 .5953 .3549 .3443 .3457 .3548 .3693 .4225 .0331 .0319 .0342 .0382 .0439 .0628 .0231 .0231 .0231 .0231 .0231 .0231 .1422 .1.1422 .1.1422 .1.1422 .1.1422 .1.1422 .1.1422 .1.1422 .1.1422 .8079 .8079 .8079 .8079 .8079 .5631 .5631 .5631 .5631 .5631 | | DUE SOUTH AND VERTICAL QTAT | = 264949
- 0002
APR
47
1522 | QTA2 = 221289 QTA3 = 190353 C2 =3638 C3 =2190 C4 = 1.5471 C5 =-1.2170 MAY JUN JUL AUG SEP OCT NOV DEC 57 69 71 69 63 52 35 24 1646 2010 1876 1638 1211 886 479 361 | | MADISON, WISCONSIN TB30 SOUTH-VERT. (M= 1) VT1/DD 48.61 VT2/DD 41.60 VT3/DD 36.14 MONTHLY DD 439 ANNUAL DD 1081 PARAMETER A .722 AZIMUTH AND TILT COEF. | T840
(M= 1)
29.89
25.58
22.22
714
2359
.588 | TB45
(M= 1)
24.63
21.08
18.31
867
3168 | TB50
(M=12)
20.39
17.47
15.18
765
4074
.596 | ELEVATION
T855
(M= 12)
16.95
14.53
12.62
920
5103
.663 | N = 860
T860
(M=12)
14.51
12.43
10.80
1075
6261 | TB65
(M=12)
12.68
10.87
9.44
1230
7567 |
TB70
(M=12)
11.26
9.65
8.39
1385
9029
.815 | AT = 43.1
TB80
(M=12)
9-20
7.89
6.85
1695
12343
.868 | |--|--|--|--|--|--|--|---|--| | A1 .0416
A2 .2472
A32145
A4 .1635
A5 .0510
B10352
B2 -1.1337
B3 .7794
B4 .6354
B5 -1.2051 | .0720
.3868
3405
.2551
.0767
0352
-1.1337
.7795
.6353
-1.2051 | .0803
.4432
4004
.2920
.0805
0352
-1.1337
.7795
.6354
-1.2051 | 0537
7508
8151
3934
0434
0129
-1.2116
8900
5880
1.1674 | 0448
.6996
7700
.3760
.0324
.0129
-1.2116
.8900
.5880
-1.1674 | 0383
.6730
7519
.3719
.0224
.0129
-1.2116
.5880
-1.1674 | 0333
.6634
~.7534
.3777
.0126
.0129
-1.2116
.8901
.5880
-1,1674 | 0293
.6656
7693
.3908
.0022
.0129
-1.2116
.8901
.5880
-1.1674 | 0239
.7219
8663
.4514
0235
.0129
-1.2116
.8900
.5880
-1.1674 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FE TAVE: 17 2 QHOR: \$20 80 | QTA1 =
C1 =
B MAR
1 28 | 270444
.0163
APR
47
1383 | 07
C2 =3502
MAY JUN
58 67
1702 1874 | TA2 = 22588
C3 = -
JUL
71
1916 | 2176
AUG
68 | QTA3 = 1
C4 = 1.5432
SEP OCT
62 50
1336 865 | 94314
C5 ±+1
NOV
36
511 | .2122
DEC
25
376 | | MILWAUKEE, WISCONSIN TB30 SOUTH-VERT. (M=12) VT1/BD 69.12 VT2/DD 59.14 VT3/DD 51.38 MONTHLY DD 220 ANNUAL DD 748 PARAMETER A .448 AZIMUTH AND TILT COEF. | TB40
(M=12)
32.18
27.53
23.92
473
1891
.598 | T845
(M=12)
24.57
21.02
18.26
620
2693
.655 | TB50
(M=12)
19.76
16.91
14.69
770
3623 | ELEVATION
TB55
(M=12)
16.51
14.13
12.27
922
4673
.754 | # 692
 TB60
 (M= 12)
 14.16
 12.11
 10.52
 1076
 5865
 .795 | 1865
(M≈12)
12.37
10.59
9.20
1231
7212
.834 | T870
(M=12)
10.99
9.40
8.17
1386
8708
.868 | AT = 42.9
TB80
(M=12)
8.98
7.68
6.67
1696
12081 | | A1 .0175 A2 .3690 A34050 A4 .2622 A50204 B1 .0264 B2 -1.1121 B3 .7744 B4 .5819 B5 -1.1475 | .0069
.4239
4558
.2977
0073
.0264
-1,1121
.7743
.5820
-1,1475 | .0034
.4409
4795
.3146
0102
.0264
-1.1121
.7743
.5820
-1.1475 | .0007
.4542
5028
.3299
0158
.0264
-1.1121
.7743
.5820
-1.1475 | 0012
.4696
5295
.3467
0222
.0264
-1.1121
.7743
.5820
-1,1475 | 0027
.4868
5587
.3648
0291
.0264
-1.1121
.7743
.5820
-1.1475 | 0039
.5033
5876
.3822
0364
-0264
-1.1121
.7743
.5820
-1.1475 | 0050
.5232
6213
.4026
0449
.0264
-1.1121
.7743
.5820
-1,1475 | 0072
.5941
7312
.4701
0699
.0264
-1.1121
.7743
.5820
-1.1475 | | TOTAL ANNUAL TRANSMITTED DUE SOUTH AND VERTICAL AZIMUTH AND FILT COEF. MONTH: JAN FEI TAVE: 22 25 QHOR: 491 665 | QTA1 =
C1 =
MAR
5 32 | 265769
.0136
APR
44
1451 | C2 =2813
MAY JUN
55 65
1746 2030 | A2 = 22156
C3 = -
JUL
69
2017 | 3320
AUG
69 | QTA3 ± 1
C4 ± 1.6062
SEP OCT
61 51
1325 884 | 90417
C5 =-1.
NOV
38
551 | .2212
DEC
25
377 | | CASPER, WYOMING TB30 SOUTH-VERT. (M= 1) YT1/DD 144.62 YT2/DD 124.08 YT3/DD 107.87 MONTHLY DD 237 ANNUAL DD 850 PARAMETER A 588 AZIMUTH AND TILT COEF. | TB40
(M= 1)
69.23
59.40
51.64
496
2112
.561 | TB45
(M= 1)
53.10
45.55
39.60
647
3003
.541 | TB50
(M=12)
42.29
36.32
31.58
695
4046
.538 | ELEVATION
TB55
(M=12)
34.66
29.77
25.88
848
5212
.551 | = 5289
TB60
(M=12)
29.34
25.20
21.91
1002
6496
.557 | TB65
(M=12)
25.41
21.82
18.97
1157
7892
.562 | TB70
(M=12)
22.41
19.24
16.73
1312
9404
.563 | T# 42.9
TB80
(M=12)
18.12
15.57
13.53
1622
12686
.546 | | A1 .0472
A2 .5783
A35950
A4 .3501
A5 .0400
B10140
B2 -1.2354
B3 .8138
B4 .5818
B5 -1.2895
TOTAL ANNUAL TRANSMITTED | .8138
.5818
-1.2895 | .0502
.8831
9309
.5486
.0515
0140
-1.2353
.8138
.5818
-1.2895 | .7613
.0739
.0439
-1.2759
.8813
.5087 | 1323
1.2214
-1.2826
.8111
.0588
.0439
-1.2759
.8813
.5087
-1.2656 | 1289
1.3027
-1.3974
.8728
.0436
.0439
-1.2759
.8813
.5087
-1.2656 | 1259
1.3876
-1.5171
.9375
.0275
.0439
-1.2759
.8813
.5087
-1.2656 | 1235
1.4837
-1.6509
1.0111
.0098
.0439
-1.2759
.8813
.5087
-1.2656 | 1229
1.7350
-1.9887
1.2030
0304
.0439
-1.2759
.8813
.5087
-1.2656 | | DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. MONTH: JAN FEB TAVE: 24 28 QHOR: 678 1024 | OTA1 =
C1 ≥
MAR
31 | 383547
.0230
APR
38
1835 | 0T
C2 =3276 ·
MAY JUN
51 62
2230 2506 | AZ = 320620
C3 = -
JUL
72
2573 | .3474
AUG
71 | QTA3 = 27
C4 = 1.5916
SEP OCT
56 47
1698 1231 | 75659
C5 =-1.
NOV
33
763 | 3893
DEC
27
543 | ``` CHEYENNE, WYOMING ELEVATION = 6142 LAT = 41.2 TB30 TB40 TB45 TB50 TR55 TB65 TB70 TREO TB90 SOUTH-VERT. (M= 1) (M= 2) 78.71 (M= 2) 59.73 (M=2) (M= 2) (M=2) (M= 2) 25.99 22.09 (M=2) (M= 2) 21.18 VT 1/00 154.61 47.66 33.65 39.46 29.33 24.93 VT2/00 40.50 35.12 132.49 66.89 50.76 33,54 28.60 18.00 VT3/DD 58.01 44,02 29.08 24.80 21.62 19.16 15.61 MONTHLY DD 240 406 536 671 951 1091 811 1231 1511 ANNUAL DD 1859 769 2684 3678 4821 6120 1513 9141 12548 PARAMETER A .550 .535 .525 -510 .496 .473 .483 . 451 .381 AZIMUTH AND TILT COEF. -.0285 -.0216 -.0128 -.0027 .0082 .0192 .0312 .0614 A2 5197 -.3609 .1012 -.2468 -.1243 .0077 . 1518 .3072 .4865 9445 A3 -.5044 -.0383 -. 1883 -.3483 -.5226 -.7134 -.9453 -1.5602 A4 .3370 .2771 -. 1028 -.2242 -.0187 .0722 . 1699 .3946 . 5367 .9130 A5 .0857 -.2278 -.2313 -.2338 ~.2442 -.2619 -.3214 81 ~.0191 -.0081 -.0081 -.0081 -.0081 -.0081 -.0081 -_0081 -.0081 B2 -1.1763 -.8855 -.8854 -.8855 ~.8854 -.8854 -.8855 -.8854 -.8854 B3 .7566 .3963 .3962 .3962 .3962 .3962 .3962 .3962 .3962 84 . 6 18R .9379 .9379 .9379 .9379 .9379 .9378 .9379 .9379 B5 -1.3233 -1.3561 -1.3561 -1.3561 -1.3561 -1,3561 ~1.3561 -1.3561 -1.3561 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL AZIMUTH AND TILT COEF. OTA1 370909 OTA3 × 266981 0498 C2 = C3 = -.2760 C4 = 1.5473 C5 =-1.3717 MONTH: JAN 25 743 FEB 26 MAR APR MAY JUN JUL AUG SEP DCT NOV 35 DEC 30 TAVE: 32 43 50 60 68 67 48 CHOR: 1015 1765 1483 1953 2182 2195 1975 1686 1220 845 674 ROCK SPRINGS, WYOMING ELEVATION = 6745 LAT = 41.6 TR30 TB40 TB45 T850 TB55 TB60 TB65 TB70 TB80 SOUTH-VERT. (M= 1) (M=12) (M=12) (M= 12) 24.11 (M=12) (M=12) (M=12) (M=12) (M=12) 64.50 55.42 VT 1/00 124.85 50.49 43.38 19.94 17.13 41.42 35.12 30.48 26.92 VT2/00 107.08 35.59 30.17 26.18 23.13 20.71 48.19 554 VT3/DD 93.09 37.72 708 22.77 20.11 30.95 26.24 18.01 14.90 MONTHLY DD 293 863 1018 1173 1328 1483 1793 ANNUAL DD 3528 1089 2546 4645 5882 7245 8729 10317 13741 PARAMETER A .446 .425 .464 .473 .473 .47] .466 .452 .404 AZIMUTH AND TILT COEF. -. 1588 .0430 .0434 .0461 .0438 .0442 .0455 .0477 .0559 1.5281 A2 .5179 1.1718 1.3842 1.2676 1.6793 1.8484 2.0589 2.6400 A3 -.5169 -1.0462 -1.1845 -1.3500 -1.7569 -1.9883 -2.2688 -3.0102 A4 .2809 .6824 .7542 .8428 .9504 1.0639 1.1908 1.3470 1.7676 A5 .0451 .2009 . 1816 . 1585 . 1342 . 1084 8080 .0516 -.0052 81 .0603 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 82 -1.2331 -1.3026 -1.3026 -1.3026 -1.3026 -1.3026 -1.3026 -1.3026 -1.3026 B3 .8005 8890 .8890 .8890 .8889 .8889 .8890 .8889 .8890 B4 6197 5295 5295 .5295 .5295 -1.2975 .5295 -1.2975 5295 5295 R5 .3053 2975 -1.2975 -1.2975 -1.2975 -1.2975 -1.2975 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL QTAI OTAL Cl = 399262 OTA3 = 286689 AZIMUTH AND TILT COEF. 0467 C3 = -.3973 C4 = 1.6346 C5 =-1.4079 SEP MONTH: JAN FEB MAR APR MAY JUN JÜL NOV AUG OCT DEC TAVE: 22 22 29 38 49 58 68 66 43 56 30 22 OHOR: 742 1072 1580 2021 2321 2558 2592 2237 1855 1328 926 640 SHERIDAN, WYOMING ELEVATION = 3967 LAT = 44.8 TB30 TB40 TB45 T850 TB55 TB60 TB65 TB70 T880 SOUTH-VERT. (M= 1) 30.51 (M= 1) 21.81 (M= 1) (M=1) (M= 1) 25,46 (M= 1) 16.96 (M= 1) 15.26 (M= 1) (M=12) VT 1/DD VT2/DD 64.19 37.78 19.08 12.62 16.36 14.22 1238 55.03 32.38 26.16 21.82 18.70 14.54 13.08 10.82 22.73 774 VT3/DD 28,14 47.82 18.96 16.25 12.64 1393 11.37 9,41 MONTHLY DD 368 626 928 1083 1548 1628 6277 ANNUAL DD 866 2053 2883 3858 4990 7709 9256 12593 PARAMETER A .812 .809 .787 .769 .762 .759 .757 .750 .724 AZIMUTH AND TILT COEF. .0076 .0094 .0137 .0171 .0122 .0128 .0132 .1161 -.1082 A2 .2404 .3139 .3911 4662 .5392 .7016 .6158 .9688 -1.1192 .7438 A3 -,2361 -.3171 -.4055 -.4955 -.5869 -. 7993 -.6863 A4 .0736 . 1642 .2179 .2745 .3305 .3862 .4458 .5132 .0172 A5 .0221 .0205 .0160 .0088 -.0016 -.0552 -.0144 -.0001 -1.1912 B1 -.0001 -.0003
-.0076 -.0001 .0001 .0001 -.0001 -.0001 B2 -1.1912 -1.1912 -1.1912 -1.1912 -1.1912 -1.1912 -1.1912 -1.2166 .8170 83 .8170 .8171 .8170 .8170 .8171 .8170 .8170 .8589 .5522 5522 .5522 -1.2152 .5522 5522 4997 -1.2152 -1.2152 -1.2152 -1.2152 -1.2152 -1.2152 -1.2152 -1.1927 TOTAL ANNUAL TRANSMITTED RADIATION DUE SOUTH AND VERTICAL OTA1 = 318069 0TA2 -.3554 Jun 265990 QTA3 = 228848 AZIMUTH AND TILT COEF. .0255 C3 = -.2704 C4 = 1.5311 C5 =-1.3015 MONTH: TAVE: JAN FEB 29 APR SEP 57 MAR MAY JUL AUG OCT NOV DEC 27 33 43 53 6 69 70 47 34 OHOR: 509 783 1508 2349 1201 1864 2061 2007 1479 1003 625 427 ``` ## APPENDIX C BLANK WORKSHEETS ## WORKSHEET 1 Schematic Design Parameters ## BUILDING SIZE Heated floor space: $A_{\Gamma}f_{J} = \underline{\qquad} ft^{L}2^{J}$ Ceiling height: h = ____ ft Total external perimeter: $P_{\Gamma}t_{7} = \underline{\qquad} ft^{L}2^{J}$ NOTE: Include external perimeter of each floor. External surface area: $A_{\Gamma}e_{1} = 2A_{\Gamma}f_{1} + (P_{\Gamma}t_{1} \text{ [multiplied by] h)} = \underline{\qquad}$ External surface-area-to-floor-area ratio: $A_{re_1}/A_{rf_1} = \underline{\hspace{1cm}}$ ## INSULATION LEVELS Thermal resistance of the wall: RWALL $ro_1 =$ deg. $f-ft^{L_2J}$ NOTE: RWALL rol is obtained from the contour map in figure 13. $RWALL = \frac{1}{2} \left[\begin{array}{c} A_{\Gamma}e_{1} \\ \hline \\ A_{-f_{-}} \end{array} \right] RWALL_{\Gamma}o_{1} = \underline{\qquad} deg.F-ft^{L}2^{J}$ Thermal resistance of the roof: RROOF = 1.5 RWALL = $_{\text{deg.F-ft}}^{\text{L}_2J}$ Thermal resistance of perimeter insulation: RPERIM — or — = 0.75 RWALL = ____ deg.F-ft^L2^J RBASE — PASSIVE SYSTEM TYPE: NOTE: $A_{\Gamma}^{C_{1}}$ is obtained from one of the contour maps in figures 14 throu Remember to convert from percent to fractional value before the graphity. recording the quantity. $$A_{\Gamma}C_{7} = \frac{A_{\Gamma}f_{7}}{A_{\Gamma}f_{7}} = \frac{A_{\Gamma}C_{7}}{A_{\Gamma}f_{7}} = \frac{A_{\Gamma}e_{7}}{A_{\Gamma}f_{7}} \frac{A_{\Gamma}e_{7}}{A$$ BUILDING ORIENTATION (AZIMUTH) [theta] = _____ degrees NOTE: Azimuth is zero for due south and positive to the east. # WORKSHEET 2 Estimation of Net Load Coefficient ## SPECIFIED DESIGN PARAMETERS | Total external perimeter: | P _Γ t ₇ = | | | |---|--|--|--| | Ground floor area: | A _[g] = | | | | Ground floor perimeter: | P _[g] = | | | | Roof area (horizontal projection): | A _F r ₇ = | | | | South wall area: NOTE: Arsq includes windows and solar aper | A _[S] = | | | | Ceiling height: | h = | | | | Nonsouth window fraction: | NSF = | | | | Number of glazings in nonsouth windows: | NGL rn = | | | | Air changes per hour: | ACH = | | | | Air density ratio (see figure 24): | ADR = | | | | CALCULATED DESIGN PARAMETERS | | | | | | | | | | Nonsouth window area: $A_{\Gamma}n_{\overline{1}} = [P_{\Gamma}t_{\overline{1}}]$ | [multiplied by] h) - Ars] NSF = | | | | Wall area: $A_{\Gamma}W_{\Gamma} = (P_{\Gamma}t_{\Gamma})$ [multip | plied by] h) - $A_{\Gamma}c_{7}$ - $A_{\Gamma}n_{7}$ NSF = | | | | NOTE: $A_{\Gamma}w_{\Gamma}$ is the total area of all external walls excluding windows and solar apertures. | | | | | NET LOAD COEFFICIENTS | | | | | Walls: | LC rwy = 24 A rwy/RWALL = | | | | Nonsouth windows: | LC rn = 26 A rn / NGL rn = | | | | Perimeter (slab on grade): | LC _{fP7} = 100 P /(RPERIM + 5) = | | | | Pick One — Basement (heated): | LC _F b ₁ = 256 P _F g ₁ / (RBASE + 8) = | | | |
 Floor (over vented crawl space):
 _ | $LC_{\Gamma}f_{7} = 24 A_{\Gamma}g_{7}/RFLOOR =$ | | | | Roof: | LC _F r ₁ = 24 A _F r ₁ /RROOF = | | | | Infiltration: $LC_{\Gamma}i_{\overline{1}} = 0.432$ (ACH [multiplied by] ADR [multiplied by] h [multiplied by] $A_{\Gamma}f_{\overline{1}}$) = | | | | | TOTAL: NLC = LC rwg + LC rng + (LC rpg or LC rbg or LC rfg) + LC rrg + LC rig = | | | | # WORKSHEET 3 System Parameters #### THERMAL STORAGE Effective heat capacity: $EHC/A_{C_1} =$ ______Btu/deg.F-f (Direct gain or radiant heat panel only) Diurnal heat capacity per ft $^{L}2^{J}$ of aperture: DHC/A $_{\Gamma}c_{7}$ = ______ Btu/deg.F-f FIRST SYSTEM System type: System number: Scale factor: F₁ = _____ $G_{\Gamma}1_{1} = \underline{\qquad} Btu/deg.F-f$ Effective aperture conductance (daily): $U_{\Gamma}c1_{\Gamma} = \underline{\qquad} Btu/deg.F-f$ Steady-state aperture conductance (hourly): System solar absorptance: $[alpha]_{\Gamma}1_{\Gamma} =$ __ Collection aperture area: $A_{\Gamma}c1_{7} = \underline{\qquad} ft^{L}2^{J}$ SECOND SYSTEM System type: System number: Scale factor: $F_{\Gamma}^{2} =$ _____ G_{Γ}^{2} = ______ Btu/deg.F-f Effective aperture conductance (daily): $U_{\Gamma}c2_{\Gamma} = \underline{\qquad} Btu/deg.F-f$ Steady-state aperture conductance (hourly): System solar absorptance: $[alpha]_{7} = ____$ $A_{\Gamma}^{C2} = \underline{\qquad} ft^{L2}$ Collection aperture area: $f_{\Gamma}1_{7} = A_{\Gamma}c1_{7}/(A_{\Gamma}c1_{7} + A_{\Gamma}c2_{7})$ FIRST SYSTEM AREA FRACTION $f_{\Gamma}2_{7} = A_{\Gamma}c2_{7}/(A_{\Gamma}c1_{7} + A_{\Gamma}c2_{7})$ SECOND SYSTEM AREA FRACTION MIXED SYSTEM PARAMETERS Scale factor: $F = (f_{\Gamma}1_{7} \text{ [multiplied by] } F_{\Gamma}1_{7}) +$ $(f_{\Gamma}2_{1} \text{ [multiplied by] } F_{\Gamma}2_{1}) = \underline{\hspace{1cm}}$ Effective aperture $G = (f_{\Gamma}1_{\gamma} \text{ [multiplied by] } G_{\Gamma}1_{\gamma}) +$ (f_{Γ}^2) [multiplied by] G_{Γ}^2 = _____ Btu/deg.F-f conductance (daily): Steady-state aperture $U_{\Gamma}c_{1} = (f_{\Gamma}1_{1} \text{ [multiplied by] } U_{\Gamma}c_{1}) +$ conductance (hourly): $(f_{\Gamma}2_{\Gamma})$ [multiplied by] $U_{\Gamma}c2_{\Gamma}$) = ______ Btu/deg.F-f System solar absorptance: [alpha] = $(f_{\Gamma}1_{\gamma})$ [multiplied by] [alpha] $f_{\Gamma}1_{\gamma}$) + $(f_{\Gamma}2_{7} \text{ [multiplied by] [alpha]}_{\Gamma}2_{7}) = \underline{\qquad}$ $A_{\Gamma}C_{1} = A_{\Gamma}C_{1} + A_{\Gamma}C_{2} = \underline{\qquad} ft^{L_{2}J}$ Collection aperture area: # WORKSHEET 4 Base Temperature ### CONSTANT THERMOSTAT SETTING Thermostat setpoint: T_fset₁ = _____ Base temperature: $T_b =$ Q_rint₇ Trset_l -ТгЬ¬ = ____ [NLC + (24 [multiplied by] Urc] [multiplied by] Arc])] NIGHT TIME SETBACK T_Γ1₇ = _____ Daytime setpoint: Duration of daytime setpoint: hr_[1] = _____ Night time setpoint: T_[2] = _____ Duration of night time setpoint: $hr_{\Gamma}^{2} = \underline{}$ Average setpoint: $T_{\text{rave}} = T_{\text{rl}} (hr_{\text{rl}} / 24) + T_{\text{rl}} (hr_{\text{rl}} / 24)$ Trave7 = _____ Building time constant: 24 HDC [tau] = ____ [tau] = —— [NLC + (24 [multiplied by] U_C] [multiplied by] A_C]) Effective thermostat setpoint: $T_{\text{Fe}} = T_{\text{F}} - e^{\text{L}} - 0.1[\text{tau}]/24^{\text{J}} (T_{\text{F}} - T_{\text{rave}})$ Base temperature: $T rb_1 =$ Q_Fint₇ тгел - T rb7 = ____ [NLC + (24 [multiplied by] Urc] [multiplied by] Arc]) # WORKSHEET 5 Weather Parameters | LOCATION | STATE: | | | | | | |--|---------------|--|---|-----|--|--| | Annual heating de | egree days: | | DD _F a _J | = | | | | FIRST SYSTEM | | | | | | | | Number of glazing Orientation: Tilt: | rs: | | | = | | degrees | | South-vertical ra | diation to de | gree day ratio: | (VTn/DD) roj | = | | Btu/ft ^L 2J-DD | | South-vertical ci | ty parameter: | | агол | = | | | | Coefficients for | azimuth/tilt | convection: | | | | | | A1 = A | .2 = | A3 = | A4 = | _ | A5 = | | | B1 = E | 32 = | B3 = | B4 = | _ | B5 = | | | Corrected city pa
(Use equation 5.1 | | | a _[1] | = | | | | Corrected radiati | | day ratio: | (VTn/DD) _F 1 ₇ | = | | Btu/ft ^L 2 ^J -DD | | SECOND SYSTEM | | | | | | | | Number of glazing Orientation: Tilt: | ıs: | | | = | | degrees | | South-vertical ra | diation to de | gree day ratio: | (VTn/DD) roj | = | | Btu/ft ^L 2 ^J -DD | | South-vertical ci | ty parameter: | | агод | = | | - | | Coefficients for | azimuth/tilt | convection: | | | | | | A1 = A | .2 = | A3 = | A4 = | _ | A5 = | | | B1 = B | 32 = | B3 = | B4 = | _ | B5 = | | | Corrected city pa
(Use equation 5.1 | | | a _[1] | = | | | | Corrected radiati
(Use equation 5.1 | | day ratio: | (VTn/DD) _F 1 ₇ | = | | Btu/ft ^L 2 ^J -DD | | MIXED WEATHER PAR | RAMETERS | | | | | | | Radiation degree | | = f _r 1 ₇ (VTn/DD) | _[1] + f _[2] (VT) | n/] | DD) _F 2 ₇ = | Btu/ | | City parameter: | | a | = f _F 1 ₇ a _F 1 ₇ + : | fг | 2 ₇ a ₆ 2 ₇ = | | # WORKSHEET 6 Estimation of Auxiliary Heat Consumption # SCALED SOLAR LOAD RATIO $SLR* = \frac{F \text{ (VTn/DD) [alpha]}}{NLC/A_{\Gamma}C_{1} + G}$ $SLR* = \underline{\qquad}$ NOTE: All parameters in this expression are defined and recorded on Worksheets 2, 3, and 4. ANNUAL HEAT-TO-LOAD-RATIO (QrAy/QrLy)ray = _____ NOTE: The yearly heat-to-load ratio is obtained from the nomogram in figure 23. Using the value of SLR* calculated above and the city parameter a from Worksheet 5, one simply reads the heat-to-load ratio off the vertical axis of the nomogram. ANNUAL AUXILIARY HEAT REQUIREMENT $Q_{\Gamma}A_{\gamma} = (Q_{\Gamma}A_{\gamma}/Q_{\Gamma}L_{\gamma})_{\Gamma}a_{\gamma}$ (NLC + G [multiplied by] $A_{\Gamma}C_{\gamma}$) DD Γ a $Q_{\Gamma}A_{\gamma} =$ # WORKSHEET 7 System Efficiencies During Reference Month ## TOTAL SYSTEM EFFICIENCY Total effective load coefficient: $TLC_{\Gamma^{e_1}} = NLC + G \text{ [multiplied by] } A_{\Gamma^{c_1}} = \underline{\hspace{1cm}} Btu/d$ Solar heating fraction: $SHF = 1 - e^{L} - SLR^{*J} = \underline{\hspace{1cm}}$ Total efficiency: $e_{\Gamma^{t_1}} = \underline{\hspace{1cm}} TLC_{\Gamma^{e_1}} \text{ [multiplied by] } SHF + (24 \text{
U}_{\Gamma^{c_1}} - G) \text{ A}_{\Gamma^{c_1}} = \underline{\hspace{1cm}}$ $e_{\Gamma^{t_1}} = \underline{\hspace{1cm}} \text{[alpha] (VTn/DD) } A_{\Gamma^{c_1}}$ (NOTE: $e_{\Gamma}t_{1} = e_{\Gamma}d_{1}$ [multiplied by] $e_{\Gamma}u_{1}$) DELIVERY EFFICIENCY e_{rd₁} = _____ UTILIZATION EFFICIENCY $e_{\Gamma}u_{\overline{1}} = \frac{e_{\Gamma}c_{\overline{1}}}{e_{\Gamma}d_{\overline{1}}} = \underline{\qquad \qquad }$ # WORKSHEET 8 Average Maximum Temperature During Reference Month | Delivered solar energy: $Q_{\Gamma}D_{\uparrow}$ = [alposite [multiplied by] $e_{\Gamma}d_{\uparrow}$ [multiplied by] | · · | Btu | |---|--|--------| | | DD | month | | Excess solar energy: | $Q_{\Gamma}E_{\Gamma} = (1 - e_{\Gamma}u_{\Gamma}) Q_{\Gamma}D_{\Gamma} =$ | Btu | | | | month | | Average temperature with ventilation (for night setback Trset = Trel): | | | | $T = T_{f}set_{7} + [10 [multiplied b]]$ | ру] SHF (1 - е _Г и _]) ^L 0.2 ^J] = | deg.F | | Temperature increment without ventil | ation: | | | [W-DELTA]TrI7 = | Q _Γ Ε _η = | deg.F | | NDAY | [multiplied by] DHC | | | Average maximum temperature _ without ventilation: Trmax1 | - T + [W-DELTA]TrI7 = | _deg.F | # WORKSHEET 9 Annual Delivered Solar Energy # FIRST SYSTEM | Transmitted solar radiation: | (QTAn) _[0] = | Btu/ft ^L 2J-yr | |--|--|--| | Coefficients for azimuth/tilt correction | on: | | | C1 = C2 = C3 = | C4 = | C5 = | | Corrected transmitted solar radiation: (Use equation 5.20) | (QTAn) _Г 1 ₇ = | Btu/ft ^L 2J-yr | | SECOND SYSTEM | | | | Transmitted solar radiation: | (QTAn) _F O ₇ = | Btu/ft ^L 2J-yr | | Coefficients for azimuth/tilt correction | on: | | | C1 = C2 = C3 = | C4 = | C5 = | | Corrected transmitted solar radiation: (Use equation 5.20) | (QTAn) _F 2 ₇ = | Btu/ft ^L 2 ^J -yr | | ANNUAL DELIVERED SOLAR ENERGY | | | | $(Q_{\Gamma}D_{\Gamma})_{\Gamma}a_{\Gamma} = [alpha] [multiplied by] A_{\Gamma}c$ $[f_{\Gamma}1_{\Gamma}]_{\Gamma}(Q_{\Gamma}A_{\Gamma})_{\Gamma}1_{\Gamma} +$ | $[multiplied by] e_{\Gamma}d_{\Gamma}$ $[f_{\Gamma}2_{\Gamma}] = \underline{\qquad}$ | | # WORKSHEET 10 Annual Incremental Cooling Load ### ANNUAL HEAT TO LOAD RATIO (Use Worksheets 4, 5, and 6 with $T_{\Gamma}set_{\Gamma} = T_{\Gamma}max_{\Gamma} - 10$) ### ANNUAL AUXILIARY HEAT REQUIRED (From Worksheet 6 with Trset = Trmax - 10) ANNUAL SOLAR HEATING FRACTION SHF $$_{\Gamma}a_{7} = 1 - \begin{vmatrix} Q_{\Gamma}A_{7} \\ ---- \end{vmatrix} = ----$$ ### ANNUAL UTILIZATION EFFICIENCY (erun) ran = [TLC_{req} [multiplied by] SHF_{raq} + (24 U_{rcq} - G) A_{rcq}] [multiplied by] DD_{raq} = _____ (Q_FD₇)_Fa₇ Note: Use: TLC rea from Worksheet 7 Urcz, G, and Arcz from Worksheet 3 DD_{ra₁} from Worksheet 5 (Q_rD₁)a from Worksheet 9 #### ACTUAL INDOOR TEMPERATURE (ANNUAL AVERAGE) (Use: $T_{\Gamma}set_{\Gamma} = T_{\Gamma}max_{\Gamma} - 10$) $T_{ract_1} = T_{rset_1} + 10 \text{ SHF}_{ra_1} \text{ [multiplied by] } (1 - e_{ru_1})_{r_0.2_1} = \underline{\qquad} \text{deg.F}$ ACTUAL ANNUAL DEGREE DAYS (Use Worksheet No. 4 with Trsetz = Tractz to determine Trbz) DD ract = _____ deg.F-day ACTUAL ANNUAL HEAT LOAD $Q_{\text{ract}_1} = (NLC + 24 U_{\text{rc}_1} \text{ [multiplied by] } A_{\text{rc}_1} \text{ [multiplied by] } DD_{\text{ract}_1} = \underline{\qquad} Btu$ INCREMENTAL COOLING LOAD $Q_{\Gamma}I_{7} = Q_{\Gamma}D_{7} + Q_{\Gamma}A_{7} - Q_{\Gamma}act_{7} =$ ____ Btu ## APPENDIX D EXAMPLE WORKSHEETS # WORKSHEET 1 Schematic Design Parameters ### BUILDING SIZE Heated floor space: $$A_{\Gamma}f_{1} = 6800 \text{ ft}^{L}2^{J}$$ Ceiling height: $$h = 9$$ ft Total external perimeter: $$P_{\Gamma}t_{7} = 684 \text{ ft}^{L}2$$ NOTE: Include external perimeter of each floor. External surface area: $A_{\Gamma}e_{1} = 2A_{\Gamma}f_{1} + (P_{\Gamma}t_{1} \text{ [multiplied by] h)} = 19,756 \text{ ft}^{L}2^{J}$ External surface-area-to-floor-area ratio: $A_{\Gamma}e_{\overline{1}}/A_{\Gamma}f_{\overline{1}} = 2.91$ $$A_{\Gamma}e_{\Gamma}/A_{\Gamma}f_{\Gamma} = 2.91$$ ## INSULATION LEVELS Thermal resistance of the wall: RWALL $$ro_1 = 22$$ deg. $F-ft^{L}2^{J}-h$ NOTE: RWALL rol is obtained from the contour map in figure 13. $$RWALL = \frac{1}{-} \begin{bmatrix} A_{\Gamma} e_{1} \\ \hline A_{\Gamma} f_{1} \end{bmatrix} RWALL_{\Gamma} e_{1} = 21 \text{ deg.F-ft}^{2} - h$$ Thermal resistance of the roof: RROOF = 1.5 RWALL = 32 deg.F-ft $$^{L}2^{J}$$ -h Thermal resistance of perimeter insulation: # PASSIVE SYSTEM TYPE: SOLAR APERTURE SIZE (DUE SOUTH ORIENTATION): Γ_ 7 $$\begin{bmatrix} A_{\Gamma} C_{1} \\ --- \\ A_{\Gamma} f_{1} \end{bmatrix} = 0.12$$ NOTE: $$\begin{bmatrix} A_{\Gamma} c_{\gamma} \\ \hline \\ A_{\Gamma} c_{\gamma} \end{bmatrix}$$ is obtained from one of the contour maps in figures 14 through $$\begin{bmatrix} A_{\Gamma} f_{\gamma} \\ \\ \end{bmatrix}_{\Gamma} c_{\gamma}$$ Remember to convert from percent to fractional value before recording the quantity. $$A_{\Gamma}C_{\gamma} = \frac{\begin{vmatrix} A_{\Gamma}f_{\gamma} & | & \Gamma^{O_{\gamma}} & A_{\Gamma}f_{\gamma} \\ & & & & 791 \end{vmatrix}}{3}$$ BUILDING ORIENTATION (AZIMUTH) [theta] = 15 degrees NOTE: Azimuth is zero for due south and positive to the east. # WORKSHEET 2 Estimation of Net Load Coefficient # SPECIFIED DESIGN PARAMETERS | SPECIFIED DESIGN PARAMETERS | | | | | | |---|--|--|--|--|--| | Total external perimeter: | $_{\mathbf{P}_{_{\mathrm{t}}}}$ = $\underline{684}$ ft | | | | | | Ground floor area: | $A_{g} = 3,400 \text{ ft}^{2}$ | | | | | | Ground floor perimeter: | $P_g = 342$ ft | | | | | | Roof area (horizontal projection): | $A_r = 3,400 \text{ ft}^2$ | | | | | | South wall area: NOTE: As includes windows and solar apertu | $A_s = 2,664$ ft ² ares. | | | | | | Ceiling height: | h = <u>9</u> ft | | | | | | Nonsouth window fraction: | NSF = 0.05 | | | | | | Number of glazings in nonsouth windows: | NGLn = 2 | | | | | | Air changes per hour: | ACH = <u>0.6</u> | | | | | | Air density ratio (see figure 24): | ADR =1.0 | | | | | | CALCULATED DESIGN PARAMETERS | | | | | | | Nonsouth window area: An = | [(P t Ž-)As]'NSF <u>175 ft</u> | | | | | | Wall area: $A_{w} = (p_{t} \bullet h) - A_{n} - A_{n} - \frac{5,190}{5,190} \text{ ft}$ NOTE: Aw is the total area of all external walls excluding windows and solar apertures. | | | | | | | NET LOAD COEFFICIENTS | | | | | | | Walls: | $LC_w = 24 A_w/RWALL = 5,931 Btu/DD$ | | | | | | Nonsouth windows: | $LC_n = 26 A_n/NGL_n = 2,275 Btu/DD$ | | | | | | (Perimeter (slab on grade): LC = : | 100Pg /(PREIM + 5) 1,629 Btu/DD | | | | | | Pick One Basement (heated): LCb = | 256 Pg/(RBASE + 8)Btu/DD | | | | | | (Floor (over vented crawl space): | LC _f = 24 Ag/RFLOORBtu/DD | | | | | | Roof : | $LC_r = 24 \text{ Ar/RROOF} 2,550 \text{ Btu/DD}$ | | | | | | Infiltration: LC $_{i}$ = 0.432 (A | CH Ž ADR Ž h Ž Af) 15.863 Btu/DD | | | | | | TOTAL: NLC = LC + LC + (LC or LC) | or LC _f) + LC _r + LC _i | | | | | # WORKSHEET 3 System Parameters | THERMAL STORAGE Effective heat capacity: (Direct gain or radiant heat panel only) | EHC/Ac = 53.93 | | |--|--|-------------------------------| | Diurnal heat capacity per ft ² of aperture: | $DHC/A_{c} = 56.96$ | _Btu/°F-ft ² | | FIRST SYSTEM | Discout main | | | System type: | Direct gain | - | | System number: | 6442 | - | | Scale factor: | F ₁ = 0.966 | - | | Effective aperture conductance (daily): | F = 4.42 | Btu/°F-ft ² -day | | Steady-state aperture conductance (hourly): | u _{cl} = <u>0.35</u> | Btu/°F-ft ² -hr | | System solar absorptance: | al = 0.97 | _ | | Collection aperture area: | A _{cl} 791 | ft² | | <pre>SECOND SYSTEM System type: System number: Scale factor: Effective aperture conductance (daily):</pre> | - | -
-
-
Btu/°F-ft2-day | | Steady-state aperture conductance (hourly): | ^u c2 = | _Btu/°F-ft2-hr | | System solar absorptance: | a ₂ = | _ | | Collection aperture area: | A _{C2} = | _ ft ¹ | | FIRST SYSTEM AREA FRACTION f1 = A _{c1} | $/(A_{c1} + A_{c2})$ | | | SECOND SYSTEM AREA FRACTION f ₂ = A _{c2} | $_{c}$ / ($A_{c1} + A_{c2}$) | | | MIXED SYSTEM PARAMETERS | | | | | (f₂• F₂) = | _ | | Effective aperture $G = (f_1 \cdot G_1)$ | + (f ₂ Ž G | _ Btu/°F-ft²-day | | Steady-state aperture $U_c = (f_1 \check{Z} U_{c1}) + conductance(hourly)$: | $f_2 \bullet U_{c2} = $ | _ Btu/°F-ft²-hr | | System solar absorptance: $a = (f_1 \cdot a_1)$ | + $(f_2 \check{Z} a_2) = \underline{\hspace{1cm}}$ | _ | | Collection aperture area: $A_c = A_c$ | | - f t² | # WORKSHEET 4 Base Temperature # CONSTANT THERMOSTAT SETTING Thermostat setpoint: T_{Γ} set₁ = _____ Base temperature: $T_{\Gamma}b_{7} =$ Trsety - Qrinty NIGHT TIME SETBACK Daytime setpoint: $T_{\Gamma}1_{7} = 70$ Duration of daytime setpoint: $hr_{\Gamma}1_{7} = 17$ Night time setpoint: $T_{\Gamma}2_{7} = 60$ Duration of night time setpoint: $hr_{\Gamma}2_{\rceil} = 7$ Average setpoint: $T_{\Gamma}ave_{1} = T_{\Gamma}1_{1}(hr_{\Gamma}1_{1}/24) + T_{\Gamma}2_{1}(hr_{\Gamma}2_{1}/24)$ $T_{\Gamma}ave_{1} = 67.$ Building time constant: $[tau] = \frac{24 \text{ DHC}}{[\text{NLC} + (24 \text{ [multiplied by] U}_{C}] \text{ [multiplied by] A}_{C}])}$ [tau] = 30. Effective thermostat setpoint: $T_{re_1} = T_{r}1_1
- e^{L} - 0.1[tau]/24^{J} (T_{r}1_1 - T_{rave_1})$ $T_{re_1} = 67$. Base temperature: $T_{\Gamma}b_{\Gamma} = T_{\Gamma}e_{\Gamma} - \frac{Q_{\Gamma}int_{\Gamma}}{[NLC + (24 [multiplied by] U_{\Gamma}c_{\Gamma} [multiplied by] A_{\Gamma}c_{\Gamma})]} - \frac{60}{[NLC + (24 [multiplied by] U_{\Gamma}c_{\Gamma} [multiplied by] A_{\Gamma}c_{\Gamma})]}$ # WORKSHEET 5 Weather Parameters | <u>LOCATION</u> | STATE : <u>V</u> | IRGINIA | | | | |--|---|----------------------------|--|-------|------------------------| | | CITY : <u>N</u> | ORFOLK | | | | | Annual heating | degree days: | | DD _a = | 2,778 | | | FIRST SYSTEM Number of glazi: | ngs: | | NGL = | 2 | | | Orientation: | J., | | θ = | 15 | degrees | | Tilt: | | | φ = | 0 | degrees | | South-vertical | radiation to degre | e day ratio: | (VTn/DD) ₁ = | 27.60 | Btu/ft ² -I | | South-vertical Coefficients for | city parameter:
r azimuthl/tilt con | vection: | a ₀ = | 0.637 | | | | A2 = -0.4382 A3 $B2 = -0.7389 B3$ | | | | | | Corrected city (Use equation 5 | parameter: | | al = - | | | | Corrected radia
(Use equation 5 | tion to degree day
(.17) | ratio: | (VTn/DD) ₁ = | 27.51 | Btu/ft ² -1 | | SECOND SYSTEM | | | NO | | | | Number of glazi
Orientation: | ngs: | | NGL = | , | degrees | | Tilt: | | | | | degrees | | | radiation to degre | e day ratio: | , , | | | | South-vertical Coefficients fo | <pre>city parameter: r azimuth/tilt con</pre> | vection: | a _o = | | | | | A2 = | | A4 = | A5= | | | <u>- </u> | B2 = F | | | | | | Corrected city
(Use equation 5 | | | a ₁ = — | | | | Corrected radia
(Use equation 5 | tion to degree day | ratio: | (VTn/DD) ₁ = | | Btu/ft ² - | | MIXED WEATHER F | PARAMETERS | | | | | | Radiation degre | e day ratio:
VTn/DD = | f ₁ (VTn/DD)1 + | f ₂ (VTn/DD) ₂ = | | Btu/ft²-: | | City parameter: | | $a = f_1$ | $a_1 + f_2 a_2 = \underline{}$ | | | # WORKSHEET 6 Estimation of Auxiliary Heat Consumption # SCALED SOLAR LOAD RATIO $$SLR* = \frac{F \text{ (VTn/DD) [alpha]}}{NLC/A_{C_1} + G}$$ $$SLR* = 0.64$$ NOTE: All parameters in this expression are defined and recorded on Worksheets 2, 3, and 4. ANNUAL HEAT-TO-LOAD-RATIO $(Q_{\Gamma}A_{\gamma}/Q_{\Gamma}L_{\gamma})_{\Gamma}a_{\gamma} = 0.37$ NOTE: The yearly heat-to-load ratio is obtained from the nomogram in figure 23. Using the value of SLR* calculated above and the city parameter a from Worksheet 5, one simply reads the heat-to-load ratio off the vertical axis of the nomogram. ANNUAL AUXILIARY HEAT REQUIREMENT $Q_{\Gamma}A_{7} = (Q_{\Gamma}A_{7}/Q_{\Gamma}L_{7})_{\Gamma}a_{7}$ (NLC + G [multiplied by] $A_{\Gamma}c_{7}$) DD $_{\Gamma}a_{7}$ $Q_{\Gamma}A_{7} = 32.6 \times 10$ # WORKSHEET 7 System Efficiencies During Reference Month ## TOTAL SYSTEM EFFICIENCY Total effective load coefficient: TLC_{$$\Gamma$$ e _{\uparrow} = NLC + G [multiplied by] A _{Γ C _{\uparrow} = 31,744 Btu/d}} Solar heating fraction: $$SHF = 1 - e^{L} - SLR^{*J} = 0.47$$ Total efficiency: $$e_{\Gamma}t_{\Gamma} = \frac{\text{TLC [multiplied by] SHF + (24 U}_{\Gamma}c_{\Gamma} - G) A_{\Gamma}c_{\Gamma}}{[\text{alpha}] (VTn/DD) A_{\Gamma}c_{\Gamma}} = \frac{0.86}{}$$ (NOTE: $$e_{\Gamma}t_{7} = e_{\Gamma}d_{7}$$ [multiplied by] $e_{\Gamma}u_{7}$) DELIVERY EFFICIENCY $$e_{\Gamma}d_{7} = 1.0$$ UTILIZATION EFFICIENCY #### WORKSHEET 8 Average Maximum Temperature During Reference Month Delivered solar energy: $$Q_{\Gamma}D_{\Gamma} = [alpha]$$ [multiplied by] $A_{\Gamma}C_{\Gamma}$ [multiplied by] $e_{\Gamma}d_{\Gamma}$ [multiplied by] $$Q_{\Gamma}E_{\Gamma} = (1 - e_{\Gamma}u_{\Gamma}) Q_{\Gamma}D_{\Gamma} = \frac{1.69 \times 10^{L}6^{J}}{mon}$$ Bt Average temperature with ventilation (for night setback Trset = Tre1): $$T = T_{\Gamma}set_{\uparrow} + [10 \text{ [multiplied by] SHF } (1 - e_{\Gamma}u_{\uparrow}) \ ^{L}0.2^{J}] = 70.7$$ Temperature increment without ventilation: $$[W-DELTA]T_{\Gamma}I_{\overline{1}} = Q_{\Gamma}E_{\overline{1}} = 1.3 d$$ NDAY [multiplied by] DHC Average maximum temperature without ventilation: $$T_{\Gamma} = T + [W-DELTA]T_{\Gamma} = 72.0$$ d # WORKSHEET 9 Annual Delivered Solar Energy ### FIRST SYSTEM Transmitted solar radiation: (QTAn) rol = 232,584 Btu/ft^L2^J-yr Coefficients for azimuth/tilt correction: C1 = 0.046 C2 = -0.2934 C3 = -0.3243 C4 = 1.6957 C5 = -1.1985 Corrected transmitted solar radiation: (QTAn) rll = 231,210 Btu/ft^L2^J-yr (Use equation 5.20) SECOND SYSTEM Transmitted solar radiation: (QTAn) rol = Btu/ft^L2^J-yr Coefficients for azimuth/tilt correction: C1 = _____ C2 = ____ C3 = ____ C4 = ____ C5 = ____ Corrected transmitted solar radiation: (QTAn) r2l = _____ Btu/ft^L2^J-yr (Use equation 5.20) ANNUAL DELIVERED SOLAR ENERGY $(Q_{\Gamma}D_{\Gamma})_{\Gamma}a_{\Gamma}$ = [alpha] [multiplied by] $A_{\Gamma}c_{\Gamma}$ [multiplied by] $e_{\Gamma}d_{\Gamma}$ [multiplied by] $[f_{\Gamma}1_{\Gamma}]_{\Gamma}$ (QTAn) $[f_{\Gamma}1_{\Gamma}]_{\Gamma}$ + $[f_{\Gamma}2_{\Gamma}]_{\Gamma}$ (QTAn) $[f_{\Gamma}1_{\Gamma}]_{\Gamma}$ = 177.4 x 10 $[f_{\Gamma}1_{\Gamma}]_{\Gamma}$ Btu/yr # WORKSHEET 10 Annual Incremental Cooling Load ### ANNUAL HEAT TO LOAD RATIO (Use Worksheets 4, 5, and 6 with $$T_{\Gamma}set_{\gamma} = T_{\Gamma}max_{\gamma} - 10$$) $$\begin{bmatrix} Q_{\Gamma} A_{\gamma} \\ - \\ Q_{\Gamma} L_{\gamma} \end{bmatrix} = 0.37$$ $$Q_{\Gamma} L_{\gamma} L_{\gamma} L_{\alpha}$$ #### ANNUAL AUXILIARY HEAT REQUIRED $$Q_{\Gamma}A_{7} = 32.6 \times 10$$ SHF $$_{\Gamma}a_{1} = 1 - \begin{vmatrix} Q_{\Gamma}A_{1} \\ - \\ Q_{\Gamma}L_{1} \end{vmatrix} = 0.63$$ #### ANNUAL UTILIZATION EFFICIENCY (erun) ran = [TLC_{Feq} [multiplied by] SHF_{faq} + (24 U_{fcq} - G) A_{fcq}] [multiplied by] DD_{faq} = 0. $$(Q_fD_q)_{faq}$$ Note: Use: TLC_{Fe₁} from Worksheet 7 U_Cc₁, G, and A_Cc₁ from Worksheet 3 DD_{ra} from Worksheet 5 (Q_CD₁)_{Ca1} from Worksheet 9 # ACTUAL INDOOR TEMPERATURE (ANNUAL AVERAGE) (Use: $T_{\Gamma}set_{1} = T_{\Gamma}max_{1} - 10$) $$T_{\Gamma}act_{7} = T_{\Gamma}set_{7} + 10 SHF_{\Gamma}a_{7}$$ [multiplied by] $(1 - e_{\Gamma}u_{7})^{L}0.2^{J} = 75.8 d$ # ACTUAL ANNUAL DEGREE DAYS $$DD_{\Gamma}act_{7} = 3,827$$ d #### ACTUAL ANNUAL HEAT LOAD $$Q_{\text{ract}} = (NLC + 24 U_{\text{rc}} [multiplied by] A_{\text{rc}}) [multiplied by] DD_{\text{ract}} = 133.5 x 1$$ #### INCREMENTAL COOLING LOAD $$Q_{\Gamma}1_{\gamma} = Q_{\Gamma}D_{\gamma} + Q_{\Gamma}A_{\gamma} - Q_{\Gamma}act_{\gamma} = 76.5 \times 10$$ # MIL-HDBK-1003/19 Custodians: Preparing Activity: Army - CE Navy - YD Navy - YD Air Force - 04 (Project FACR-0166)